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When a helical spring is subjected to a rather large impact loading, significant axial and rotational oscillations can occur in the
spring. A mathematical formulation is presented to describe non linear dynamic response of impacted helical springs. The
governing equations for such motion are two coupled non-linear, hyperbolic, partial differential equations of second order. The
axial and rotational strains and velocities are considered as principal dependent variables. Since the governing equations are
non-linear, the solution of the system of equations can be obtained only by some approximate numerical technique. When the
strains are small, the equations of motion are rendered linear. The numerical technique employed in this paper is the method of
characteristics for, both, linear and non-linear wave propagation problems. In order to resolve the non-linear problem of the
dynamic response of helical spring, the non-1inear characteristics method is used. The compatibility equations are integrated
along the characteristics and written in difference form. Thus, the unknown values of the axial strain, rotational strain, axial
velocity and rotational velocity at any point of the spring, can be determined by resolving a system of four simultaneous
equations. For this system, the values of the coefficients and the known variables are computed by interpolation and integration
along non-linear characteristic lines. The procedure must be slightly modified when the end points of the spring are involved. At
both ends, in order to determine the unknown variables values, use is made of only two characteristics. The numerical results
are obtained for helical spring under axial impact. The dynamic responses are computed and plotted for some sections of the
spring.
Key words: helical spring, dynamic response, strains, method of characteristics, non linear behaviour

Ko je spiralna vzmet sunkovito mo~no obremenjena, lahko nastanejo v njej osna in rotacijsko nihanje. Predstavljena je
matemati~na re{itev za opis nelinearnega odgovora obremenjene vzmeti. Ta odgovor lahko predstavimo z dvema povezanima
nelinearnima portalnima hiperboli~nima diferencialnima ena~bama druge stopnje. Kot glavni spremenljivki so upo{tevane osne
in rotacijske deformacije. Ena~be niso linearne, zato so re{ljive le s pribli`no numeri~no tehniko. Pri majhnih deformacijah so
ena~be nihanja linearne. Uporabljena numeri~na tehnika je metoda karakteristik za oboje, linearno in nelinearno propagacijo
valovanja. S ciljem, da se najde re{itev za nelinearni problem, dinami~nega odgovora vzmeti, je uporabljena linearna
karakteristika. Ena~be kompatibilnosti so integrirane vzdol` karakteristik in napisane v obliki diferenc. Tako na~in je mogo~e
dolo~iti neznane vrednosti za aksialno in rotacijsko deformacijo in hitrost v vsaki to~ki vzmeti z re{itvijo sistema iz simultanih
ena~b. Za ta sistem so vrednosti koeficientov in znanih spremenljivk izra~unane z interpolacijo in integracijo vzdol`
nekarakteristi~nih linij. Proceduro je potrebno modificirati pri kon~nih to~kah vzmeti. Za re{itev za ti dve to~ki in za dolo~itev
vrednosti neznanih spremenljivk sta uporabljeni le dve spremenljivki. Numeri~ni rezultati so dolo~eni za spiralno vzmet pri osni
obremenitvi. Dinami~ni odgovori so izra~unani in grafi~no prikazani za nekatere prereze vzmeti.
Klju~ne besede: spiralna vzmet, dinami~ni odgovor, deformacije, metoda karakteristik, nelinearno vedenje

1 INTRODUCTION

The dynamic behaviour of helical springs is an
important engineering problem. In practice, helical
springs are commonly used as structural elements in
many mechanical applications (suspension systems,
motor valve springs,…). The primary functions of
springs are to absorb energy, to apply a definite force or
torque, to support moving masses or isolate vibration,…

To simplify the analysis, it is generally assumed that
the material is elastic. The design of helical springs
requires two stages, the static and dynamic. The
analytical solution to the static equations of cylindrical
helical springs subjected to large deflections was
obtained by Love 1.

In many research papers, the dynamic response of
elastic material springs is investigated using various
models. When a helical spring is subjected to a rather

large impact loading, significant torsional oscillations
can occur in the spring. The equations of motion,
governing this behaviour, are derived in an article by
Phillips and Costello 2. Stokes 3 conducted an analytical
and experimental program to investigate the radial
expansion of helical springs due to longitudinal impact.
The significance of torsional oscillations on the radial
expansion of helical springs is presented in the work of
Costello 4. In this work a linear theory was presented and
the analytical solution, obtained by the Laplace trans-
form, did indicate rather large radial expansion under
impact. Sinha and Costello 5 used a finite difference
technique and the method of linear characteristics to
solve numerically the non-linear partial differential
equations in the time domain.

Mottershead 6 developed special finite element for
solving the differential equations. Yilderim 7 developed
an efficient numerical method based on the stiffness
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transfer matrix for predicting the natural frequencies of
cylindrical helical spring. Becker et al. 8 also used the
matrix transfer method to produce the natural frequen-
cies of helical springs. Dammak et al. 9 developed an
efficient two nodes finite elements with six degrees of
freedom per node to model the behaviour of helical
spring.

In this paper we extend the work of Sinha and
Costello 5 to investigate numerically the non-linear beha-
viour of impacted springs using non linear characteristics
method and to compare the results with linear theory.
The numerical results of linear theory are obtained by
the method of characteristics and by the Lax Wendroff
finite differences method (Ayadi and Hadj-Taïeb 10).

2 MATHEMATICAL MODEL

The equations which describe non linear one-dimen-
sional dynamic behaviour of helical springs can be
adapted from the analytical model developed by Phillips
and Costello 2. Applying the theory of dimensional
analysis and the momentum equations, to an element of
spring between two sections x and x+dx (Figure 1a),
submitted to axial force F and torque T, yields the
following equations of spring motion:
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where u is the axial displacement of the spring, υ = rθ is
the rotational displacement of the spring, r is the radius
of the spring helix in the unstretched position, x is the
axial co-ordinate along the spring and t is time.

The coefficients a, b, c and e, occurring in equations
(1) and (2), are given by the expressions:

a
r

EI

F
x= ⋅ = + ⋅

2 ∂
∂ε

υ α α α( sin cos )(sin )

[ ]
⋅ − + +

− −




ν

1+ν
υ α α α

α

α
( sin cos )(sin )

cos

( ) sin
/x

xu

2

2 2 3 2
1 1










(3)

b
r

EI

F r

EI

T u

u

x

x

= ⋅ = ⋅ = +

− +

2
2

2

2 2

1

1 1

∂
∂

∂
∂β ε

α
α

sin
( )cos

( ) sin[ ]α
1 2/






−

−
+

−
+

+ 



cos
( )( sin cos

α

ν

ν

ν
υ α + α)

1

2

1
1 ux x (4)

c
r

EI

T
ux= ⋅ = +





∂
∂ε

α 1−
ν

1+ν
αsin ( ) sin1 2 2 (5)

e
Mr

EIh
=

2

(6)

where h is the length of the spring in the unstretched
position, E is Young’s modulus of the spring material,
M is the total mass of the spring, I is the moment of
inertia of the wire cross section, n is Poisson’s ratio of
the spring material and α is the helix angle of the spring
in the unstretched position. Thus, it is seen that the
coefficients a, b, c and e are functions of ε = ux = ∂u/∂x
and b = ux = ¶u/¶x and hence, the governing equations
of motion are non-linear.

It can be seen from equations (3), (4) and (5) that
when the strains are small, i.e., IuxI << 1 and IuxI << 1
the coefficients have the approximate values:
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If these values are employed in place of the actual
non-constant coefficients, the equations of motion are
rendered linear.

3 NUMERICAL SOLUTION

The numerical solution of the initial boundary value
problem governed by the equations (1) and (2) may be
obtained by the method of characteristics (Abbott 11,
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Figure 1: Helical spring description. a) Free body diagram of spring
element, b) Static deflection of helical spring
Slika 1: Opis spiralne vzmeti; a) prostotelesni diagram elementa
vzmeti; b) stati~ni upogib spiralne vzmeti



Chou and Mortimer 12, Hadj-Taïeb and Lili 13). The
method of characteristics, which is based on the
propagation of the waves, is applied to obtain ordinary
differential equations. In principle, it is not a numerical
but an analytical solution method. However some of the
necessary integrations are generally done numerically.

Equations (1) and (2) can be converted into a set of
first order partial differential equations. Since ¶ux/¶t =
∂ut/∂x, ∂ux/∂t = ∂�t/∂x and (∂ux/∂x)dx + (∂ux/∂t)dt = dux

etc., the above set of equations (1) and (2), in matrix
form, can be written as:
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The characteristic directions are determined by
setting the determinant of the coefficient matrix of
equation (8) equal to zero. Hence the following equation
results:
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The above equation has four roots which are:

dt

dx

a c a c b

ac b






= + + − +
−











1 2

2 2

2

1 2

4

2,

/

( ) ( )

( )

m
and

dt

dx

a c a c b

ac b






= − + ± − +
−











3 4

2 2

2

1 2

4

2,

/

( ) ( )

( )
(10)

When linear theory is used, we obtain:
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cf is the fast speed of rotational waves (υx, υt) and cs is
the small speed of axial waves (ux, ut).

The four roots defined equations (10) or (11) are real
and, hence, the system is hyperbolic. The canonical form
of a hyperbolic system along the characteristics (some-
times called either 'Compatibility equations' or 'Riemann
Invariant equations') can be determined by replacing any
column of the coefficient matrix in equation (8) by the
right-hand side column vector and setting the deter-
minant equal to zero. The following equation results:
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In difference form, equation (12) becomes:
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Thus, the unknown values of (ux, υx, ut and υt), at any
point L, as shown in Figure 2, can be determined by
knowing their values at the points P, Q, R and S lying on
the four characteristics passing through L and then
solving four simultaneous equations obtained from
equation (13). Although the characteristics are curved
due to the non-linearity of equations (1) and (2), it will
be assumed that LP, LQ, LR and LS are straight lines.
Hence, equation (13) yields:
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Figure 2: Method of characteristics. a) Non-linear theory, b) Linear
theory
Slika 2:Metoda karakteristik; a) nelinearna teorija; b) linearna teorija



where uxL, υxL, utL and υtL are the unknown values at the
point L; uxP, υxP, utP and υtP are the known values at the
point P; and (dt/dux)1,P is the slope of the characteristics
of family 1 passing through P. Three similar equations
can be written for the points Q, R and S. By solving the
four simultaneous equations obtained from equation
(13), the values of uxL, υxL, utL and υtL can be obtained
at any point L. It should be noted that the values at the
points P, Q, R and S, are computed by non-linear inter-
polation.
Figure 2b shows the characteristics in the case of

linear theory where the wavespeeds cf and cs are con-
stant.

4 NUMERICAL RESULTS FOR IMPACTED
SPRING

Consider the hypothetical spring system shown by
Figure 3. The parameters of the spring are: the original
length of spring h = 48.26 cm, the helix angle α =
0.141815 rd, the radius of the spring r = 17.932 cm, the
number of coils n = 3, the Poisson’s ratio ν = 0.29, the
wire radius rf = 1.509 cm, the Young’s modulus E =
20.685·106 N/cm2, the initial compression ∆ = 16.51 cm
and the mass of the spring M = 19.146 kg.

Initial conditions

The initial conditions are:

ux(x,0) = –D/h and ux(x,0) = 0 (14)

ut(x,0) = 0 and �t(x,0) = 0 (15)

Boundary conditions

The dynamic response studied here is due to a given
velocity at the impacted end of the spring x = 0 (see
Figure 4). The boundary conditions are:

ut(0,t) = f1(t), ut(0,t) = 0, ut(h,t) = 0, ut(h,t) = 0 (16)

φ1(t) is defined by the values given in Table 1.

Table 1: Axial velocity at x = 0

Time, t/ms 0 3.375 27.75 50.625
Axial velocity, /(m/s) 0 9.062 1.165 -0.3

The spring is divided into equidistant sections in the
x direction: ∆x = h/N. Two separate FORTRAN pro-
grams were run on a PC computer. The problem has
been solved by the method of characteristics using N =
180 grid points for both linear and non-linear theories. In
the case of linear theory the same problem has also been
solved by the finite difference Lax-Wendroff method
using N = 1000 grid points [Ayadi and Hadj-Taïeb
(2006)].

The computed results by the method of characte-
ristics for the linear and non-linear theories are shown in
Figures 5 and 6. The axial and rotational strains are at
the impacted end (x = 0).

As pointed by Phillips and Costello, the results of the
plots show the necessity of solving the non-linear
equations of motion for the spring under this type of
loading. The linear theory is adequate for predicting the
axial force in the spring but can lead to erroneous results
in predicting the axial twisting moment and radial
expansion of the spring (see Table 2).
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Figure 4: Axial velocity at the impacted end of the spring (x = 0)
Slika 4: Osna hitrost na sunkovito obremenjenem koncu vzmeti (x =
0)

Figure 3: Helical spring boundaries
Slika 3: Meja spiralne vzmeti

Figure 6: Rotational strain at the impacted end (x =0).
Slika 6: Rotacijska deformacija na sunkovito obremenjenem koncu (x
= 0)

Figure 5: Axial strain at the impacted end (x = 0).
Slika 5: Osna deformacija na sunkovito obremenjenem koncu (x = 0)



Table 2: Axial force, axial moment and radial expansion at x = 0 and t
= 0.0346 sec

Time
t/(ms)

Axial force
(N)

Axial moment
(mN)

Radial
expansion
(mm)

Linear theory -11100 540.5 -0.950
Non linear
theory

-11167.1 1155.4 -2.8194

It should be pointed out that once the axial and
rotational strains are known, the stresses can be
computed from the elementary strength of material
formula. Generally, the most significant stresses
occurring in a helical spring are due to the torsional
moment acting on the wire cross section. Since the
torsional moment on a cross section is due mainly to the
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Figure 8: Rotational strains in the spring
Slika 8: Rotacijske deformacije v vzmeti
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Figure 7: Axial strains in the spring
Slika 7: Osne deformacije v vzmeti



axial force in the spring, the linear theory is felt to be
quite adequate for ca1culating the stresses in this
example.
Figures 7 and 8 show the computed strain curves at

some sections of the spring (x = 0, x = h/4, x = h/2, x =
3h/4 and x = h). It illustrates the phenomenon we are
dealing with in the case of linear and non-linear spring
dynamic responses. Due to the non-linearity of equations
(1) and (2), the wave speeds are not constant and the
characteristics lines are curved. Hence, the strain wave
fronts are smoothly running. The computed strain results
of the linear equations of motion presented in Figures 7
and 8 are obtained by finite difference Lax-Wendroff
scheme.
Figure 9 shows the characteristics lines for linear

theory. At time t = 0, the spring is impacted and two
waves, fast rotational strain wave and slow axial strain
wave, travel the spring until they reach the other end x =
h. The behaviour of characteristic paths of rotational
wave differs from those of the axial one. The strain
evolution would result from the velocity function applied
at the impacted spring end, x = 0, and from the wave
reflections at the two ends of the spring. It should be
noted that the axial strain wave has an effect on the
rotational strain. As it can be seen from the curves of
Figures 7 and 8, the reflected rotational strain wave
travelling from the end of the spring causes rotational
strain to rise. But the reflected axial wave attenuates and
limits the values of rotational strain. The process is
repeated and indicated the influence of axial strain wave
on the behaviour of rotational strain.

5 CONCLUSION

The numerical solution of the spring dynamic
response has been presented in this paper. The solution is
obtained with coupled two non-linear partial differential
equations of the hyperbolic type. The two numerical

methods employed are the method of curved
characteristics and the finite-difference conservative
method of Lax-Wendroff. The non-linear characteristics
method requires the use of non-linear interpolation
method to compute the strains evolution at any interior
section of the spring.

The finite difference method is more practical and
simulates correctly the strain waves propagation when
the linear equations of motion are considered. Computed
results obtained by this method agree favourably well
with the numerical results based upon the characteristics
method. The developed program has been applied to the
large deformation analysis of helical springs under axial
loading. It can be seen from the calculated results that
the linear theory is reasonably accurate, as far as, the
axial strain is concerned but is in considerable error for
investigating the rotational strain.
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Figure 9: Characteristic lines for helical spring linear response
dynamic
Slika 9: Karakteristi~ne linije za linearni dinami~ni odgovor spiralne
vzmeti


