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The modeling of hot shape rolling of steel is represented by using a meshless method. The physical model consists of coupled
thermal and mechanical models. Both models are numerically solved by using a strong formulation. The material is assumed to
behave ideally plastic. The model decomposes the 3D geometry of the steel billet into a traveling 2D cross section which lets us
analyze the large shape reductions by a sequence of small steps. A uniform velocity over each of the cross-sections is assumed.
The meshless method, based on collocation with radial basis functions is used to solve the thermo-mechanical problem. The
node distribution is calculatedby elliptic node generation at each deformation step to the new form of the billet. The solution is
calculated in terms of temperatures and displacements at each node. Preliminary numerical examples for the new rolling mill in
[tore Steel are shown.
Keywords: steel, hot rolling, radial basis functions, meshless numerical method

Modeliranje vro~ega valjanja je predstavljeno z uporabo brezmre`ne numeri~ne metode. Fizikalni model je sestavljen iz
sklopljenega termi~nega in mehanskega modela. Oba sta numer~no re{ena z uporabo mo~ne formulacije. Predpostavljamo, da se
material vede idealno plasti~no. V modelu razstavimo 3D-geometrijo jeklene gredice v premikajo~ 2D-prerez, ki omogo~a
analizo velikih sprememb oblike v majhnih korakih. Predpostavimo uniformno hitrost preko vsakega prereza. Za re{itev
termo-mehanskega problema je uporabljena brezmre`na numeri~na metoda, ki temelji na kolokaciji z radialnimi baznimi
funkcijami. Distribucijo diskretizacijskih to~k smo za vsako novo obliko prereza gredice izra~unali na podlagi elipti~nega
generatorja diskretizacijskih to~k. Re{itev je podana kot temperatura in premik v vsaki to~ki. Prikazani so preliminarni
numeri~ni primeri za novo valjarsko progo v podjetju [tore Steel.
Klju~ne besede: jeklo, vro~e valjanje, radialne bazne funkcije, brezmre`na numeri~na metoda

1 INTRODUCTION

The main aim of this paper is elaboration of the
coupled thermo-mechanical computational model deve-
loped for hot shape rolling of steel. The output of the
thermal model is the temperature field and mechanical
model the displacement (deformation). Shape rolling is a
3D process, however it is analyzed with 2D imaginary
slices which is denoted as a slice model. The coordinate
system of a 2D slice is based on Langrangian description
where the slice travels across the rolling contact. The
third axis, the rolling direction, is based on the Eularian
description where there is a constant inflow and outflow
of steel through the rolling direction. This is considered
as a mixed Eularian-Langrangian model. It was dis-
cussed previously by many authors 1,2.

In many publications of rolling Finite Element
Method (FEM) was used which is based on a mesh. A
novel numerical method used in this paper to solve the
involved partial differential equations is the Local Radial
Basis Function Collocation Method (LRBFCM). This is
a completely meshless procedure. LRBFCM has been re-
cently used in highly sophisticated simulations like
multi-scale solidification modeling 3, convection driven
melting of anisotropic metals 4, continuous casting of
steel 5. This paper is organized in a way that, first the
thermal model and afterwards the mechanical model are

developed. Overall it becomes a coupled thermo mecha-
nical model. The flow chart of the process is shown in
Figure 1.

2 THERMAL MODEL

The thermal model of the shape rolling process is
aimed to calculate the temperature field of the steel slab
during the rolling process. The three dimensional domain
�3D with boundary �3D is considered. The solution
procedure is based on Cartesian coordinate system with
axes x, y, z. Slices coincide with coordinates and the
rolling direction is z. The steady state temperature
distribution in the rolled product is defined through the
following equation,

∇⋅ = ∇⋅ ∇ +( ) ( )�c T k T Sp v ; p � �3D (x,y,z) (1)

Since we analyze the process with 2D slices perpen-
dicular to the rolling direction and assume thata uniform
velocity over the slices (homogenous compression) takes
place. The Equation (1) can be transferred into
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with p, �, t, cp, T, k, ventry, Aentry, (A)z and S standing for
position vector, density, time, specific heat, temperature,
thermal conductivity, entry speed of billet, entry cross
sectional area, instant cross sectional area and internal
heat generation due to plastic deformation. It is assumed
in the slice model that the heat transport takes place
only in the direction perpendicular to the rolling
direction and that the homogenous deformation takes
place. The Neumann boundary condition on the part of
the boundary denoted as �N, Robin boundary condition
on the part of the boundary denoted as �R are taken into
consideration (� = �N � �R) which are described below,
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The N� nodes at the domain and N� nodes at the
boundary are used to discretize the temperature in
LRBFCM where for each node pn = {px, py}T. For each
node there is a defined influence domain with N�

neighboring nodes. For each influence domain a radial
basis function in terms of multiquadric is written

y p p /x p p /y ci x xn y yn= − + − +( ) ( )max max
2 2 2

The temperature can now be interpolated as
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with the collocation coefficients to be determined. The
main equation in 2D can be rewritten by using the
explicit time stepping,
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3 MECHANICAL MODEL

A strong form is chosen here for analysis due to its
compatibility with LRBFCM. Adomain � with
boundary �, � = �U � �T is considered where �U is the
essential and �T represents the natural boundary
conditions. The strong formulation of the static metal
deformation problems is:

LT� + b = 0 (6)

In the calculations, in order to avoid complications of
a 3D solution, the slab is analyzed, compatible with the
thermal model, with imaginary traveling 2D slices that
are perpendicular to the rolling direction. For a 2D slice
method, L is the 3×2 derivative matrix with elements
L px11 = ∂ ∂/ , L12 0= , L21 0= , L py22 = ∂ ∂/ , L py31 = ∂ ∂/
and L py32 = ∂ ∂/ , s = [ ]T� � �x y xy, , is the stress vector,

and b = [ ]Tb bx y, is the body force. At the essential
boundary �U

u(p) = u(p) ; p � �U (7)

where u(p) is displacement vector and u(p) is the
prescribed displacement vector. At the naturalboundary
condition �T

NTs = t ; p � �T (8)

is valid, where t is the prescribed surface traction
t= x y[ ] , T , N is the 2×3 matrix of direction cosines of

the normal direction at the boundary which can be
defined as N11 = N32 = nx, N12 = N21 = 0, N31 = N22 = ny

(nx,ny) represent correlation of the normal at the boun-
dary). In a 2D system the equations for mechanical
model can be written as,
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The discretization is made in terms of displacement
on x and y axes for each slice,
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Since the strain vector � = [�x,�y,�xy]T can be written in
terms of displacement as e = Lu, the strain vector � can
be expressed as a stress vector by using 6×6 stiffness
matrix C which depends on the material characteristic
assumption such as elastic, elastic-plastic or ideally
plastic.
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Figure 1: Flow chat of the coupled thermo mechanical model.
Slika 1: Blo~ni diagram sklopljenega termo-mehanskega modela
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4 TRANSFINITE INTERPOLATION (TFI)

This technique is used to generate initial grid which
is confirming to the geometry encountered in different
stages of plate and shape rolling. Suppose that there
exists a transformation r(p�, p�) = {px(p�, p�), py(p�, p�)}T

which maps the unit square, 0 < p� < 1, 0 < p� < 1 in the
computational domain onto the interior of the region
ABCD in the physical domain such that the edges p� =
0,1 map to the boundaries AB, CD and the edges p� = 0,1
are mapped to the boundaries AC, BD. The transfor-
mation is used for this purpose is defined as

r(p�,p�) = (1 – p�)rl(p�) + �rr(p�)rb(p�) +
p�rt(p�) – (1 – p�)(1 – p�)rb(0) – (1 – p�)p�rt(0) – (15)
(1 – p�)p�rb(1) – p�p�rt(1)

Where rb, rt, rl, rr represent the values at the bottom,
top, left and right edges respectively. The initial grid is
refined through ENG 6. Figure 2 shows initial node
generation through TFI and its correlation with ENG.

5 CONCLUSION

In this paper the thermal and mechanical formula-
tions are given for hot shape rolling. The numerical
method for the solution of the problem is based on
meshfree LRBFCM. The preliminary result of mechani-
cal model for elastic case is presented in Figure 3. The
future work will include plastic deformation in a se-
quence of 10 rolling stands as recently installed in [tore
–Steel Company.
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Figure 3: Simulation of flat rolled (180 × 180) mm cross sectioned
16MnCrS5 steel at 1100 °C with Young’s modulus E = 97362.21 MPa
and Poisson’s ratio v = 0.35678. The total reduction is 16.66 % and
preliminary analyzed with 5 slices by using elastic stiffness matrix 7.
Arrows represents the displacement vector for each slice. The exit
speed is equal to 1.14389 times the entry speed of the billet. Due to
symmetry only the top right part of the billet is considered.
Slika 3: Simulacija prereza (180 × 180) mm plo{~atega valjanja za
jeklo16MnCrS5 pri 1100 °C z Youngovim modulom E = 97362.21
MPa in Poissonovim razmerjem v = 0.35678. Skupno zmanj{anje je
16,66 % in predhodno analizirano s 5 rezinami z uporabo elasti~ne
togostne matrike 7. Pu{~ice pomenijo vektor premika za vsako rezino.
Izhodna hitrost je enaka 1.14389-kratniku vhodne hitrosti gredice.
Zaradi simetrije je upo{tevana samo zgornja polovica gredice.

Figure 2: Transformation from computational domain to physical
domain (left), TFI and nodes displacement through ENG (right). The
collocation points are put on the intersection of grid lines.
Slika 2: Transformacija izra~unskega obmo~ja v fizi~no obmo~je
(levo) TFI in premik to~k preko ENG (desno). Kolokacijske to~ke so
postavljene v prerez mre`nih linij.




