YU ISSN 0372-8633

ŽELEZARSKI Zbornik

VSEBINA

Stran

1

9

Švajger Milan, I. Ranc — Železarna Ravne

MOŻNOSTI SPREMEMB KEMIČNE SESTAVE JEKLA MED PROCESOM ELEKTRIČNEGA PRETALJEVANJA POD ŻLINDRO.

Vodopivec Franc, M. Kmetič – Metalurški inštitut Ljubljana A. Rodič – Železarna Ravne

O ZADRŽEVANJU REKRISTALIZACIJE, AV-STENITA PRI VROČEM VALJANJU CEMEN-TACIJSKIH JEKEL V VEČ VTIKIH PRI PADA-JOČI TEMPERATURI

Kmetič D. F. Vodopivec – Metalurški inštitut Ljubljana F. Vizjak, F. Haler – Železarna Štore VPLIV STOPNJE PREDELAVE NA LASTNOSTI 17 KONTI JEKLA

Uranc Franc – Železarna Ravne VPLIV TOPLOTNE OBDELAVE NA ŽILAVOST 27 BAINETA Cr-W-V JEKEL 27

LETO 18 ŠT. 1 — 1984 Žezb bo 18 (1) 1-36 (1984)

IZDAJAJO ŽELEZARNE JESENICE, RAVNE, ŠTORE IN METALURŠKI INŠTITUT

1 229280

ŽELEZARSKI ZBORNIK IZDAJAJO ŽELEZARNE JESENICE, RAVNE, ŠTORE IN METALURŠKI INŠTITUT

LETO 18

LJUBLJANA

MAREC 1984

1 228123

Vsebina	Inhalt	Contents	Содержание
stran	Seite	Page	страница
M. Švajger, I. Ranc Možnosti sprememb kemi- čne sestave jekla med proce- som električnega pretaljeva- nja pod žlindro UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11C, D11a	M. Švajger, I. Ranc Möglichkeiten für die Ände- rung der chemischen Zusam- mensetzung von Stahl wä- hrend der Elektroschlacke- umschmelzung. UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11C, D11a	M. Švajger, I. Ranc Possibilities for Changing Chemical Composition of Steel During Electroslag Remelting 1 UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11C, D11a	М. Švajger, I. Ranc Возможности изменения химического состава ста- ли во время процесса электрического переплава под шлаком. 1 UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11C, D11a
F. Vodopivec, M. Kmetič, A. Rodič O zadrževanju rekristaliza- cije avstenita pri vročem va- ljanju cementacijskih jekel v več vtikih pri padajoči tem- peraturi 9 UDK: 621.771:669.14.298.2 ASM/SLA: F23, CM, N5	F. Vodopivec, M. Kmetič, A. Rodič Hinderung der Rekristalli- sation von Austenit beim Warmwalzen der Einsatzstä- hle bei fallender Temperatur 9 UDK: 621.771:669.14.298.2 ASM/SLA: F23, CM, M5	F. Vodopivec, M. Kmetič, A. Rodič On Retaining the Recrysta- llization of Austenite in Hot rolling the Case-Hardening Steel at Decreasing Tempe- rature 9 UDK: 621.771:669.14.298.2 ASM/SLA: F23, CN, N5	F. Vodopivec, M. Kmetič, A. Rodič Озадершки рекристалли- зации аустенита при горя- чей прокатки цементуе- мых сталей при понижаю- шей температуре. 9 UDK: 621.771:669.14.298.2 ASM/SLA: F23, CN, N5
D. Kmetič, F. Vodopivec, F. Vizjak, F. Haler Vpliv stopnje predelave na lastnosti konti jekla 17 UDK: 621.771.016:620.183:620.184 ASM/SLA: F23p, P, D9q	D. Kmetič, F. Vodopivec, V. Vizjak, F. Haler Einfluss des Verformunges- grades auf die Eigenschaften von stranggegossenem Stahl UDK: 621.771.016:620.183: 620.184 ASM/SLA: F23p, P, D9q	D. Kmetič, F. Vodopivec, V. Vizjak, F. Haler Influence of Working De- gree on the Properties of Continuosly Cast Steel 17 UDK: 621.771.016:620.183:620.184 ASM/SLA: F23p, P, D9q	 D. Kmetič, F. Vodopivec, V. Vizjak, F. Haler Влияние степени перера- ботки на свойства стали непрерывного литья. 17 UDK: 621.771.016:620.183:620.184 ASM/SLA: F23p, P, D9q
F. Uranc Vpliv toplotne obdelave na žilavost bainita Cr-W-V jekel 27 UDK: 620.178.746.22.621.785.4 ASM/SLA: 1 26p, Q6n, N8g, N8m	F. Uranc Einfluss der Wärmebehand- lung auf die Zähigkeit von Bainit in Cr-W-V Stählen 27 UDK: 620.178.746.22.621.785.4 ASM/SLA: 126p, Q6n, N8g, N8m	F. Uranc Influence of Heat Treatment on the Bainite Toughness in Cr-W-V Steel 27 UDK: 620.178.746.22.621.785.4 ASM/SLA: 126p, Q6n, N8g, N8m	F. Uranc Влияние термической обработки на вязкость бейнита CR-W-V сталей. 27 UDK: 620.178,746.22.621.785.4 ASM/SLA: 126p, Q6n, N8g, N8m
and the second		Anna anna anna anna anna anna anna anna	

228124

0.8292.80

00

ŻELEZARSKI ZBORNIK

ANALISING ANALISING

Minternations and an and a second and a second and a second a seco		
Влатал терентета обработна на назаветь балата СЗ-W-V страјћ. 37	Influence of Heat Treatment as the Beasile Templeten in Co-W-V Savel	

ELEZARSKI ZBOR IZDAJAJO ŽELEZARNE JESENICE, RAVNE, ŠTORE IN METALURŠKI INŠTITUT

LETO 18

LJUBLJANA

MAREC 1984

Možnosti sprememb kemične sestave jekla med procesom električnega pretaljevanja pod žlindro

Milan Švajger in Janez Ranc

UDK: 669.046.54:669.187 ASM/SLA: D 8 p, D 11 n, D 11 r, D 11 a

Opisani so industrijski poizkusi dolegiranja Si, Cr in V med električnim pretaljevanjem pod žlindro Cr-Mo in Cr-Mo-V jekel, Rezultati kažejo, da je med EPŽ postopkom do določene meje možno vplivati na popravo sestave EPŽ ingota. Kot EPZ elektrode uporabljamo ingote, lite v kokile in izrabljene hladne valje. Elementi, ki med EPŽ procesom radi odgorevajo, so v omenjenih elektrodah večkrat na spodnji analizni meji. To tem bolj velja za izrabljene hladne valje, ki so že bili pretaljeni pod žlindro. Statistična analiza odgorov elementov je pokazala, da je EPŽ ingot večkrat analizni izmeček, kljub neoporečni sestavi elektrode. S tehnologijo dolegiranja je ta problem enostavno rešljiv.

UVOD

Osnovna naloga električnega pretaljevanja pod žlindro je doseči usmerjeno primarno kristalizacijo, ugodno za nadaljnjo plastično predelavo ter boljšo čistost jekla. Ker med pretaljevanjem potekajo oksidacijsko-redukcijski procesi, se temu primerno spremeni tudi sestava jekla. Elementi, kot aluminij, silicij in podobni, lahko oksidirajo in prehajajo iz jekla v žlindro.

Dezoksidacija žlindre med pretaljevanjem, npr. z aluminijem, bistveno zmanjša odgor omenjenih elementov, vendar je omejena zaradi predpisane vsebnosti aluminija v jeklu. Ker je stopnja dezoksidacije vedno kompromis med prisotnim prostim kisikom, ki ga mora aluminij vezati, in dovoljeno vsebnostjo aluminija v EPŽ ingotu, moramo z določenim odgorom elementov, npr. silicija, računati že pri izdelavi matične šarže za EPŽ elektrode, kjer naj bo temu primerna vsebnost teh elementov.

Praksa je pokazala, da imajo EPŽ elektrode in izrabljeni valji za hladno valjanje, ki jih neposredno pretaljujemo po EPZ postopku, večkrat neustrezno sestavo, ki že vnaprej povzroča analizni izmeček EPŽ ingota.

Milan Švajger, dipl. inž. metalurgije, vodja raziskav za jeklarno v železarni Ravne.

0 1963

Ranc, diel, inž. metalurgije, železarna Ravne.

Da bi takšne elektrode izločili iz proizvodnega programa zaradi minimalnih odstopanj kemične sestave, bi bilo neekonomično.

Potrebe so narekovale, da smo najprej raziskali možnosti dolegiranja silicija, kroma in vanadija, kar bo v nadaljevanju tudi opisano.

1. NAČINI IN POGOJI DOLEGIRANJA PRI EPŽ POSTOPKU

V glavnem danes poznamo tri načine dodajanja dodatkov v kristalizator med pretaljevanjem1 (slika 1):

a) Najpreprostejši in zelo fleksibilen je način dodajanja s kontinuirnim dozatorjem. Če tega nimamo, lahko dodajamo tudi ročno v čim krajših časovnih intervalih. Pri tem je zelo pomembna zrnatost in predhodna obdelava ferolegure, npr. žarjenje.

b) Dolegiranje nekega elementa z dodatno elektrodo, ki ta element vsebuje v znatni količini. Istočasno moramo upoštevati, da so v dodatni elektrodi prisotni

^{2 -} dodajni material 5 - jeklena kopel 6 - strjen ingot

3 - kristalizator

Slika 1 Načini dolegiranja pri EPŽ postopku

Fig.1

Ways of additional alloying at the ESR process

tudi drugi elementi. Elektroda ni priključena na izvor električnega toka, lahko je ločena ali privarjena na osnovno elektrodo. Takih elektrod je lahko več in so razporejene okoli osnovne elektrode.

c) Dolegiranje je možno tudi s stržensko elektrodo. Za to potrebujemo votle elektrode, ki jih v sredi napolnimo s feroleguro primerne sestave in zrnatosti. Ta način je najzahtevnejši in se v glavnem uporablja v EPŽ jeklarnah, kjer nimajo lastne proizvodnje EPŽ elektrod. V tem primeru izdelajo elektrode tako, da pločevino oblikujejo v obliko cevi, ki jo napolnijo s ferolegurami primerne sestave in zrnatosti, sintrajo in nato pretaljujejo.

Za dolegiranje pri EPŽ procesu morajo biti izpolnjeni naslednji pogoji:

da je tališče ferolegure čim bližje tališču jekla,

 da je gostota ferolegure enaka ali manjša od gostote jekla in večja od tekoče žlindre,

 — če dodajamo po načinu a ali c, mora biti ferolegura primerne zrnatosti in

 način dodajanja ferolegure naj bo kontinuiren;
 če je diskontinuiren, moramo dodajati v čim krajših časovnih intervalih.

2. DOLEGIRANJE SILICIJA

Poizkuse dolegiranja smo izvajali med pretaljevanjem Cr-Mo jekla in smo vsebnosti posameznih elementov variirali v mejah:

C = 0,22 - 0,32%	
Si=0,30-0,60 %	
Mn = 0,40 - 0,60%	
Cr=2,60-3,50 %	

Mo = 0,40-	-0,60 %
Cu = max.	0,25 %
S = max. 0,	020 %
P = max. 0	025 %

2.1 Analiza odgorov elementov pri standardnem pretaljevanju brez dolegiranja

Analiza vezanih serij za odgore elementov med pretaljevanjem brez dolegiranja zajema 51 parov podatkov o sestavi elektroda — EPZ ingot. Sestavo ingotov smo določili pri »glavi«. Parametra temperature in vsebnost kisika nista zajeta, saj se pri vpeljani tehnologiji in pri enakih pretaljevalnih pogojih le malo spreminjata ter ju ni potrebno meriti. Predpostavljamo, da je njuno variiranje le subjektivne narave. V ingotih je znašala poprečna vsebnost $Al_c = 0,027\%$ in $Al_t = 0,019\%$.

Silicij od vseh elementov v sestavi jekla med pretaljevanjem najbolj odgoreva. Povprečna razlika med vsebnostjo silicija v elektrodi in ingotu je znašala pri naših poizkusih 0,087 %. Ta razlika

$$\overline{\Delta \% Si} = \overline{\% Si_e} - \overline{\% Si_i} = 0.454 \% - 0.367 \% = 0.087 \%$$

je prikazana s porazdelitvijo v verjetnostni mreži na sliki 2. Za 95 % zanesljivost mora biti izpolnjen pogoj

$$Si_i - 1,96 \cdot S_{Si_i} \ge 0,30$$
 %,

kjer je 0,30 % spodnja predpisana meja za Si. Iz tega sledi, da mora biti povprečna vsebnost silicija v ingotu

$$S_{i} \ge 0.30 \% + 1.96 \cdot S_{s_{i}} \ge 0.432 \%$$

če znaša standardni odklon Ssi,=0,0676.

Iz povprečne razlike vsebnosti silicija v elektrodi in ingotu dobimo potrebno povprečno vsebnost silicija v elektrodi.

$$\frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100$$

oziroma za 95 % zanesljivost naj bo vsebnost

$$\text{Si}_{e} = \text{Si}_{e} - 1,96 \cdot \text{Ssi}_{e} = 0,386 \text{\%}.$$

Fig. 2

Distribution of silicon in the electrode and the ESR ingot, and the differences of contents

Za prakso torej ugotavljamo, da moramo pri vsebnostih silicija v elektrodi 0,20 do 0,60 % računati s povprečnim odgorom silicija okrog 19 %. Za toliko moramo glede na zahtevano sestavo EPŽ jekla povečati vsebnost silicija pri izdelavi elektrod.

Diagram na sliki 3, s katerim pojasnimo 67 % vseh vsebnosti silicija v ingotu, kaže, da ima na odgor silicija vpliv tudi vsebnost kroma v jeklu. Višja bo vsebnost kroma, večji bo odgor silicija. Fischer in Janke² sta ugotovila, da silicij pri vsebnosti kroma 1,2 % aktivnost kisika v jeklu znižuje, z naraščajočo vsebnostjo kroma pa jo zvišuje. Če smo prej ugotovili, da moramo imeti minimalno vsebnost silicija v elektrodi okrog 0,39 %, moramo sedaj dodati, da to velja za vsebnosti kroma do okrog 3,1 %. Če vsebnost kroma v elektrodi narašča, moramo zvišati tudi vsebnost silicija, da nam vsebnost v ingotu ne bo padla pod spodnjo predpisano mejo 0,30 %

Tudi vsebnost žvepla je odvisna od izhodne vsebnosti v elektrodi, obenem pa še od vsebnosti silicija (slika 4). Višja vsebnost silicija v elektrodi pomeni večji odgor silicija in več SiO₂ v žlindri, s tem pa manjšo bazičnost žlindre in slabše razžveplanje.

Aluminij je kot dezoksidacijski element najtesneje povezan z odgorom silicija in mangana. Povprečno imamo v 51 ingotih vsebnost Al_t=0,019 % ob najnižji vsebnosti 0,002 % in najvišji 0,046 %. Višja bo vsebnost aluminija, manjši bo odgor silicija. Bolj za ilustracijo kot za kvantitativno uporabo nam nomogram na sliki 5 prikaže medsebojne soodvisnosti vsebnosti silicija v elektrodi in vsebnosti silicija, mangana ter topnega aluminija v ingotu. Če povežemo linije enakih vsebnosti silicija v elektrodi in ingotu, dobimo točke, ki predstavljajo linijo mejne vsebnosti topnega aluminija med odgorom in prigorom silicija. Tolikšna vsebnost topnega aluminija, ki bi nam zagotovila enako vsebnost silicija v ingotu, kot je v elektrodi, je praktično nesprejemljiva in moramo zato z določenim odgorom silicija pač računati. Nomogram kaže, da pri približno 50 % odgoru silicija nimamo več aluminija v ingotu; dejansko pa ingot, pretaljen pod žlindro CAF 3, še vedno vsebuje neko minimalno količino aluminija.

Vsebnost silicija v EPŽ ingotu v odvisnosti od vsebnosti Si in Cr v elektrodi

Fig. 3

Silicon contents in the ESR ingot in the relation to the Si and Cr contents in the electrode

Slika 4

Odžveplanje pri pretaljevanju Cr-Mo jekla pod žlindro v odvisnosti od vsebnosti S in Si v elektrodi

Fig. 4

Desulphurisation in remelting Cr-Mo steel depending on the S and Si contents in the electrode

Correlations between Si in electrode and Si, Mn, and Alt in the ESR ingot

Vsebnosti ostalih elementov se med pretaljevanjem praktično ne spremenijo in so njihove razlike $\Delta \% E = E_e - \% E_i$ manjše od toleranc analitske tehnike.

2.2 Poizkusi

Pri manjšem premeru kristalizatorja, in s tem manjši jekleni kopeli, je dolegiranje zahtevnejše. Zato smo se odločili za format kristalizatorja Ø310 mm in težo ingota 814 kg, s tem da smo vzeli enaka izhodišča za predpis tehnologije kot pri formatu kristalizatorja kv. 400 mm. Elektrode kv. 160 mm so vsebovale 0,32 % Si in brez dolegiranja silicija ne bi zadržali v ingotu minimalno 0,30 % Si.

Dodajali smo FeSi 75 sestave: 73,3 % Si, 0,44 % C, 0,006 % S in 6 ppm H₂. Gostota znaša 3,7 g/cm³ in interval taljenja 1210 do 1315 °C³. Način dodajanja prikazuje tabela 1.

Uporabili smo standardno žlindro CAF 3 smerne sestave: 33 % CaO, 33 % CaF₂, 33 % Al₂O₃ in največ 3 % SiO₂. Gostota žlindre znaša pri temperaturi 1700 °C 2,2 g/cm³, tališče pa ima okrog 1300 °C. Dodatek aluminija za dezoksidacijo žlindre je znašal 0,07 % talilne hitrosti. Sestavo ingota smo kontrolirali pri »nogi« in »glavi« ingota (glej tabelo 1 in sliko 6).

Tabela 1: Dodatek ferosilicija za različne taline in načrtovane oziroma dosežene vsebnosti silicija v EPŽ ingotu.

Število poiz- kusov	Številka taline	Načrtova- na vsebnost Si v ingotu (%)	Dodatek (g FeSi/5 minut)	Povprečno dosežena vsebnost Si v ingotu (%) »noga« »glava«		
8	07176/13-20	0,37	16	0.32	0,34	
13	07202/0-20	0,41	30	0.34	0.37	
9	07176/0-8	0,46	45	0.36	0,42	
4	07176/9-12	0,53	70	0,42	0,45	

2.3 Vpliv dolegiranja na potek pretaljevanja in kakovost ingota

Za obnašanje silicija moramo vedeti, da je v normalni EPŽ praksi največji odgor silicija pri »nogi« ingota, ko je vsebnost SiO₂ v žlindri še nizka, in znatno manjši odgor pri »glavi«, ko je vsebnost SiO₂ v žlindri bistveno večja in je tendenca prehajanja silicija iz jekla v žlindro manjša.

Če bi pretaljevali brez dolegiranja silicija, bi na osnovi že omenjenih podatkov dobili povprečen odgor silicija pri »glavi« ingota 19 % ali vsebnost silicija bi znašala 0,23 %; pri »nogi« bi bila še nižja. Zaradi dodajanja ferosilicija smo dosegli povprečne vsebnosti silicija pri »nogi« in »glavi« ingota, kot prikazuje tabela 1 in slika 6.

Vidimo, da smo pri »nogi« ingota z dodatkom ferosilicija 16 g/5 minut ravno kompenzirali odgor silicija, pri »glavi« pa smo že dolegirali 0,02 % Si. V diagramu na sliki 6 nam zgornja linija predstavlja vsebnost silicija v odvisnosti od dodatka ferosilicija za »glavo« ingota, spodnja pa za »nogo« ingota. Šrafirano področje predstavlja vmesne vsebnosti silicija po višini ingota. Z dolžino ingota in dodatkom ferosilicija bo razlika vsebnosti silicija med »glavo« in »nogo« naraščala. Povprečen izkoristek ferosilicija je znašal pri »nogi« 77 % in pri »glavi«, kjer je vsebnost SiO₂ v žlindri večja in tendenca prehajanja silicija v žlindro manjša, 85 %. Torej preide v žlindrino kopel 15–23 % dodanega ferosilicija

Vpliv dodatka FeSi med pretaljevanjem Cr-Mo jekla na vsebnost Si v »glavi« in »nogi« EPŽ ingota

Fig. 6

Influence of the FeSi addition in remelting Cr-Mo steel on the Si content in the top and the bottom of the ESR ingot

oziroma 11–17 % silicija, kar le neznatno poveča vsebnost SiO₂ v žlindri v primerjavi s pretaljevanjem brez dolegiranja. Bazičnost žlindre CAF 3 (CaO/SiO₂) znaša na začetku pretaljevanja okrog 18 in med pretaljevanjem zaradi odgora Si hitro pada. Na koncu pretaljevanja je bazičnost žlindre različna, odvisna od dolžine ingota oziroma količine pretaljenega jekla na enoto teže žlindre. Pri daljših ingotih lahko doseže bazičnost vrednost 1, v našem primeru se je gibala v mejah 3–5.

Ne glede na dodano količino ferosilicija, je znašala stopnja razžveplanja pri »nogi« ingota nad 70 % in pri »glavi« nad 40 % (slika 7). Temu primerno se je tudi spreminjala vsebnost žvepla po višini ingota od 0,004 % do 0,007 %, kar je identično pretaljevanju brez dolegiranja.

Izkoristek dodanega aluminija za dezoksidacijo žlindre je dokaj majhen in po vpeljani tehnologiji v Železarni Ravne smo ga dodajali pri vseh poizkusnih talinah v količini 0,07 % talilne hitrosti, kar znaša pri hitrosti pretaljevanja 256 kg/h 180 g Al-granul/h. Tako smo dosegli povprečne vsebnosti topnega aluminija 0,031 % pri »nogi« in 0,014 % pri »glavi« ingota. Več kot dvakrat višjo vsebnost topnega aluminija pri »nogi« ingota si razlagamo z reakcijo

$$3[Si] + 2(Al_2O_3) = 4[Al] + 3(SiO_2),$$

ker je prehod aluminija iz žlindrine v kovinsko kopel povezan z odgorom silicija⁴. Za ilustracijo imamo na sliki 8 prikazane soodvisnosti med razmerjem (SiO₂)/ [Si] proti bazičnosti (CaO)/(SiO₂), topnemu aluminiju in vsebnosti (FeO + MnO). Na začetku pretaljevanja je vsebnost (SiO₂) v žlindri majhna, kar pogojuje večji od-

Ingot: Ø 310 mm, 814 kg Elektroda: Ø 160 mm Zlindra: CAF 3 $\alpha = (256 \pm 16) \text{ kg/h}$ $S_{c} = 0.014\%$ Dodatek Al za dezoksidacijo žlindre: 0,07 % talilne hitrosti

Slika 7

Stopnja razžveplanja Cr-Mo jekla v različnih fazah pretaljevanja

Fig. 7

Degree of desulphurisation of Cr-Mo steel in various stages of remelting

gor [Si] in višjo bazičnost žlindre. Na koncu pretaljevanja je razmerje (SiO2)/[Si] visoko in bazičnost nizka, kar povzroči manjši odgor [Si] in ob konstantnem dotoku kisika večji odgor [Al]. Z večanjem razmerja (SiO₂)/[Si] raste v žlindrini kopeli tudi vsebnost (FeO) in (MnO).

Vsebnosti ostalih elementov so med pretaljevanjem z dolegiranjem silicija praktično ne spremenijo. Makroin mikropreiskave jekla so pokazale, da se v določenem primeru lahko pojavijo napake kot posledica nepravilnega in neenakomernega dodajanja, ki ima pri manjših formatih kristalizatorja večji vpliv kot pri večjih, kjer je jeklena kopel večja.

Napake se pojavijo v obliki oksidnih makrovključkov železa, silicija in kroma.

3. DOLEGIRANJE KROMA IN VANADIJA

Poizkuse dolegiranja kroma in vanadija smo izvajali istočasno med pretaljevanjem Cr-Mo-V jekla, kjer so vsebnosti posameznih elementov variirale v mejah:

C=0,60-0,65 %	Mn = 0,40-0,70 %
Si=0,22-1,20 %	Mo = 1,20 - 1,50 %
Cr=4,00-6,00 %	S=max. 0,010 %
V=0,50-0,80 %	P=max. 0,025 %

Jeklo pretaljujemo prvenstveno pod žlindro tipa CAF 3, vendar zaradi kemične sestave in drugih lastnosti jekla z bistveno nižjo talilno hitrostjo in stopnjo dezoksidacije kot Cr-Mo jeklo, opisano v poglavju 2.

Ingot: Ø 310 mm, 814 kg

Elektroda: Ø 160 mm

Žlindra: CAF 3

 $\alpha = (256 \pm 11) \text{ kg/h}$

Dodatek Al za dezoksidacijo žlindre: 0,07 % talilne hitrosti

Slika 8

Soodvisnosti med bazičnostjo žlindre, Alt, (FeO+MnO) in (SiO2)/[Si]

Fig. 8

Correlations between the slab basicity, Alt, (FeO+MnO), and (Sio₂)/[Si]

3.1 Analiza odgorov elementov pri standardnem pretaljevanju brez dolegiranja

Analiza vezanih serij za odgore elementov med pretaljevanjem brez dolegiranja zajema 52 parov podatkov o sestavi elektroda - EPZ ingot. Sestavo ingotov smo določili pri »glavi«. Tudi tu parametra temperatura in vsebnost kisika nista zajeta, saj se pri vpeljani tehnologiji in pri enakih pretaljevalnih pogojih le malo spreminjata ter ju ni potrebno meriti.

Silicij od vseh elementov v sestavi jekla med pretaljevanjem najbolj odgoreva. Povprečna razlika med vsebnostjo silicija v elektrodi in ingotu je znašala pri naših poizkusih 0,08 %. Ob povprečni vsebnosti silicija v elektrodi 0,60 % je znašal odgor 14 %. Nižji odgor silicija proti Cr-Mo jeklu pripisujemo višjim vsebnostim Cr. V

in C. Z višjo vsebnostjo silicija v elektrodi odgor narašča, kar kaže na sliki 9 odklon premice od linije enakih vsebnosti silicija v elektrodi in EPŽ ingotu.

Povprečna razlika med vsebnostjo žvepla v elektrodi in ingotu znaša 0,005 %, čemur usteza stopnja razžveplanja 54 %. Pri tem moramo vedeti, da veljajo

Vsebnost silicija v EPŽ ingotu v odvisnosti od vsebnosti silicija v elektrodi

Fig. 9

Silicon content in the ESR ingot depending on the silicon content in the electrode podatki za »glavo« ingota, kjer jemljemo vzorce za kemično analizo. Višja bo vsebnost žvepla v elektrodi ter silicija in aluminija v ingotu, večja bo razlika $\Delta \% S = \% S_e - \% S_i$ oziroma stopnja razžveplanja (slika 10). Višja vsebnost aluminija v ingotu pogojuje nižjo vsebnost kisika, zaradi česar silicij manj odgoreva in bo bazičnost žlindre večja. Ob povprečni vsebnosti Al₁=0,020 % v EPŽ ingotu so spremembe vsebnosti ostalih elementov v elektrodi nepomembne.

3.2 Poizkusi

Za poizkuse dolegiranja kroma in vanadija smo izbrali format kristalizatorja Ø500 mm in težo ingotov 3000 kg. Za dolegiranje kroma smo uporabljali FeCr affine sestave 67,2 % Cr in 0,21 % C. Gostota je znašala 7,0 g/cm³ in interval taljenja 1520 do 1600 °C³. Za dolegiranje vanadija smo uporabili FeV 80 sestave 78,6 % V in 0,08 % C. Gostota je znašala 6,2 g/cm³ in interval taljenja 1685 do 1710 °C³. FeCr affine in FeV 80 smo dodajali istočasno v količinah, ki so prikazane v tabeli 2.

3.3 Vpliv dolegiranja na potek pretaljevanja in kakovost ingota

Vpliv različnih dodatkov FeCr affine na povišanje vsebnosti kroma v ingotu je prikazan na sliki 11, kjer predstavlja zgornja linija vsebnosti kroma v »glavi«, spodnja pa v »nogi« ingota. Šrafirano področje predstavlja vmesne vsebnosti kroma po višini ingota. Razlika vsebnosti kroma med »glavo« in »nogo« ingota je posledica različnega izkoristka dodanega FeCr-affine oziroma prehoda kroma v žlindrino kopel. Na začetku pretaljevanja je izkoristek FeCr affine 98 % in razmerje (Cr₂O₃)/[Cr] je 1,5·10⁻², proti koncu pretaljevanja pa je izkoristek 99 % in razmerje (Cr₂O₃)/[Cr] okoli 3,2·10⁻² (slika 12).

Vpliv vsebnosti nekaterih elementov na odžveplanje Cr-Mo-V jekla pri EPŽ postopku

Fig. 10

Influence of the content of some elements on the desulphurisation of Cr-Mo-V steel in the ESR process

Tabela 2: Dodatek FeCraff in FeV80 pri posameznih poizkusih dolegiranja med EPZ — pretaljevanjem

Št. poizkusa	Talina	Vsebnost v elektrodi		Cil vsebu	ljna nost v sotu	Dodatek v g/ /5 minut		
		% Cr	% V	% Cr	% V	Fe- Craff.	FeV80	
1	07314/2	5,66	0,67	5,72	0,74	40	30	
2	07314/0	5,66	0,67	5,76	0,80	55	60	
3	07314/1	5,66	0,67	5,86	0,80	110	60	
4	07314/3	5,66	0,67	5,90	0,80	160	60	
5	07318/0	5,40	0,63	5,50	0,70	55	32	
6	07318/1	5,40	0,63	5,61	0,75	110	55	
7	07318/2	5,40	0,63	5,79	0,80	220	80	
8	07318/3	5,40	0,63	5,98	0,80	320	80	

Ingot: Ø 500 mm, 3000 kg Elektroda: Ø 350 mm

Žlindra: CAF-3

 $\alpha = 438 \text{ kg/h}$

Dodatek Al za dezoksidacijo žlindre: 0,01 % talilne hitrosti

Slika 11

Vpliv dodatka FeCr med pretaljevanjem na povečanje vsebnosti Cr pri »glavi« in »nogi« EPŽ ingota

Fig. 11

Influence of the FeCr addition during remelting on the increased Cr content in the top and the bottom of the ESR ingot

Diagram a na sliki 12 prikazuje porazdelitev kroma med žlindrino in kovinsko kopeljo v odvisnosti od bazičnosti žlindre, diagram b pa porazdelitev v odvisnosti od vsebnosti FeO v žlindrini kopeli. Odgor kroma je povezan z odgorom silicija; višje bodo vsebnosti SiO₂ in FeO v žlindrini kopeli, večje bo razmerje (Cr₂O₃/ [Cr].

Popolnoma analogne rezultate dobimo pri dolegiranju vanadija, kjer je izkoristek dodanega FeV 80 pri »nogi« 96 % in pri »glavi« ingota 99 %. Povprečno dobimo pri »glavi« ingota 0,02 % višje vsebnosti vanadija.

Dolegiranje kroma in vanadija praktično ne vpliva na stopnjo razžveplanja, ki je znašala pri »nogi« 70 % in pri »glavi« ingota 48 %. Makro- in mikroskopski pregled jekla ni pokazal notranjih napak, ki bi bile posledici dolegiranja (slika 13).

ZAKLJUČKI

V poročilu smo prikazali rezultate dolegiranja silicija, kroma in vanadija pri električnem pretaljevanju je-

Ingot: Ø 500 mm, 3000 kg Elektroda: Ø 350 mm Talilna hitrost: 438 kg/h Žlindra: CAF-3

Dodatek Al za dezoksidacijo žlindre: 0,01 % talilne hitrosti

Slika 12

Vpliv bazičnosti žlindre in vsebnosti (FeO) na porazdelitev kroma med kovinsko in žlindrino kopeljo

Fig. 12

Influence of the slag basicity and (FeO) content on the distribution of chromium between the metal and slag bath

kel pod žlindro. Silicij smo dolegirali pri pretaljevanju Cr-Mo jekla iz elektrode kv. 160 mm v ingot Ø310 mm in teže 814 kg. Krom in vanadij smo hkrati dolegirali pri pretaljevanju Cr-Mo-V jekla iz elektrode Ø350 mm v ingot Ø500 mm in teže 3000 kg. Zanimalo nas je, kakšne posledice ima dolegiranje posameznega elementa na kakovost EPŽ ingota in na potek spremljajočih procesov pri EPŽ postopku, npr. razžveplanje. Na osnovi rezultatov lahko zaključimo:

 Dolegiranje silicija, kroma in vanadija pri EPŽ postopku je možno z določenimi omejitvami.

 Potrebna je skrbna priprava ferolegure. Granulacija naj znaša 1 do 3 mm, temperatura predhodnega žarjenja naj bo 900 °C.

 Dodajanje ferolegure naj bo kontinuirno preko avtomatske dozirne naprave ali ročno vsaj vsakih 5 minut.

— Stopnja dolegiranja je odvisna od premera kristalizatorja oziroma velikosti jeklene kopeli. Večja je kopel, večja je lahko stopnja dolegiranja. Cr-Mo jeklo smo pretaljevali v kristalizatorju Ø310 mm in dolegirali silicij za 0,18 %. Cr-Mo-V jeklo smo pretaljevali v kristalizatorju Ø500 mm in dolegirali krom za 0,50 % ter

Izgled jedkalne plošče Cr-Mo-V jekla, pretaljenega po EPŽ postopku z dolegiranjem Cr in V

Fig. 13

Appearance of etched macrospecimen of Cr-Mo-V steel remelted by the ESR process and additionally alloyed with Cr and V

vanadij za 0,17 %. Pri dolegiranju silicija so se v dveh primerih pojavili oksidni makrovključki kot posledica nepravilnega dodajanja (granulacija, termična obdelava in količina dodanega ferosilicija). Dolegiranje silicija le neznatno poveča vsebnost SiO₂ v žlindri in praktično ne vpliva na stopnjo razžveplanja.

 Dolegiranje kroma in vanadija na spremembo ostalih elementov med pretaljevanjem ne vpliva. Izkoristek pri dolegiranju je tolikšen, da le neznatni delež ferolegure preide v žlindro.

— Vsebnosti posameznih elementov so po dolžini ingota različne, kar je pogojeno z majhno količino žlindre in dolžino ingota. Razlike so pri pretaljevanju ingotov dolžine 6 m temu primerno večje. Raziskave so nakazale različne možnosti za odpravo teh razlik, vendar je v industrijski praksi skoraj nemogoče upoštevati vse vplivne parametre. Naš cilj je z nadaljnjimi raziskavami razviti dinamičen model računalniškega vodenje EPŽ procesa, ki bo poleg že razvitega modela vodenja električnih parametrov v toku celotnega časa pretaljevanja dajal navodila za popravo sestave jekla in žlindre, tako da bodo razlike po dolžini ingota minimalne.

Literatura:

- V. Prosenc: Beeinflussung der Gefügeausbildung beim Elektro-Schlacke – Umschmelzen von Stahl, Dr. – Ing. – Dissertation, Technische Universität Hannover, 1975.
- W. Fischer und D. Janke: Einfluss von Kohlenstoff, Silicium, Aluminium oder Titan auf die Sauerstoffaktivität in legierten Stahlschmelzen, Archiv für das Eisenhüttenwesen, 47 (1976) 10, str. 589-594.
- E. Plöchinger und O. Etterich: Elektrostahlerzeugung, 3. izdaja, Verlag Stahleisen M. B. H./Düsseldorf, 1979.
- B. Koroušić: Prispevek k termodinamiki reakcij, ki nastopajo pri EPŽ procesu, ŽZB, 14 (1980) 1, 2, str. 65-72.
- J. Ranc: Diplomska naloga, VTO Montanistika Univerza E. Kardelja v Ljubljani, 1982.

ZUSAMMENFASSUNG

Industrieversuche für das Zulegieren von Si, Cr und V während der Elektroschlackeumschmelzung der Cr-Mo und Cr-Mo-V Stähle werden beschrieben. Die Versuchsergebnisse zeigen, dass es während des ESU Verfahrens bis zu einer gewissen Grenze möglich ist die chemische Zuscmmensetzung des ESU Blockes zu korrigieren. Als ESU Elektroden werden in Kokillen gegossene Blöcke und abgenutzte Kaltwalzen verwendet. Die Elemente, welche während des ESU Verfahrens abbrennen, sind in den Elektroden an der unteren Analysengrenze. Dieses gilt besonders für die abgenutzten Kaltwalzen die schon einmal unter der Schlacke umgeschmolzen worden sind. Die statische Auswertung der Abbrände von Elementen zeigte, dass ein ESU Block der chemischen Analyse nach ein Auswurf sein kann, trotz der einwandfreien chemischen Zusammensetzung der Elektrode. Durch die Technologie der Zulegierung ist dieses Problem einfach gelösst worden.

SUMMARY

Industrial trial with alloying Si, Cr, and V to Cr-Mo, and Cr-Mo-V steel in the electroslag remelting is described. The given results show that composition of the ESR ingots can be changed to a certain degree during the ESR process. As ESR electrodes, the ingots cast into moulds or scrap cold-rolling rolls are used. The elements in which losses occur during the ESR process are in the mentioned electrodes often on the lower analytical limit. This is still more valid for the scrap rolls which were already once remelted in the ESR process. Statistical analysis of the element losses showed that an ESR ingot is frequently rejected due to the composition though the electrode had faultless composition. By alloying this problem can be simply solved.

ЗАКЛЮЧЕНИЕ

Дано описание промышленных опытов присадки легирующих элементов Si, Cr и V во время электрического преплава под шлаком Cr-Mo и Cr-Mo-V сталей. Рассмотрены конечные итоги опытов, которые показывают, что во время ЭШП способа можно до определенного предела влиять на корректуру состава слитка ЭШП-а. Как электроды употреблены слитки отлиты в изложнцы или же израсходованные холодные валки. Во время процесса ЭШП-а замечено, что обыкновенно выгорание элементов в электродах происходит когда их содержание в упомянутых электродах находиться в нижних аналитических пределах. Это в особенности имеет значение при израсходованных валков, которые уже были употреблены при переплаве под шлаком. Статистический анализ выгорания отдельных химических составных элементов электрод показал, что слиток ЭШП-а может часто оказаться браком несмотря на правильный химический анализ электрода. С применением технологии присадки легирующих элементов этот вопрос можно решить весьма простым способом.

O zadrževanju rekristalizacije avstenita pri vročem valjanju cementacijskih jekel v več vtikih pri padajoči temperaturi

UDK: 621.771:669.14.298.2 ASM/SLA: F 23, CN, M 5

F. Vodopivec, M. Kmetič in A. Rodič

1. UVOD

V normalnem procesu vročega valjanja jekla sledi deformaciji pred naslednjim vtikom rekristalizacija avstenita. Hitrost rekristalizacije jekla po vroči deformaciji je pri določeni temperaturi odvisna od velikosti avstenitnih zrn in od sestave jekla. Čim večja so avstenitna zrna (AZ), tem počasnejša je rekristalizacija^{1,2}. Od legirnih elementov najmočneje zadržuje rekristalizacijo avstenita niobij 3.4, podoben, vendar bolj šibek vpliv imata tudi ogljik in mangan5.6.7. Njun vpliv se pokaže pri nekoliko nižji temperaturi in raste počasneje kot vpliv niobija, ko se znižuje temperatura valjanja. Ko se ta temperatura znižuje, razpada tudi trdna raztopina disperzoidov v avstenitu in nastajajo drobni izločki, ki blokirajo migracijo mej avstenitnih zrn. Hitrost, mogoče pa tudi morfologija tvorbe izločkov, sta odvisni tudi od procesov izločanja deformacije energije. Ta kratek uvod pove, da prihaja pri vročem valjanju pri znižani temperaturi do spleta pojavov in dogajanj, ki so bolj zapleteni, kot med valjanjem s popolno rekristalizacijo avstenita med vtiki pri visoki temperaturi. V tem sestavku bomo razpravljali o dogajanjih med valjanjem pri temperaturah, ko med vtiki ni popolne rekristalizacije avstenita. Zanimal nas bo predvsem odgovor na vpraša-nje, zakaj posamična AZ, ki po prvem vtiku niso rekristalizirala, ne rekristalizirajo v nadaljevanju valjanja kljub temu, da raste njihova skupna deformacija, medtem ko po vsakem vtiku rekristalizira njihova okolica, ki je rekristalizirala po prvem vtiku.

2. EKSPERIMENTALNO DELO

V raziskavi smo uporabili več jekel s sestavo, kakršno vidimo v tabeli 1. Jekla za cementacijo smo izbrali zato, ker se v njih po ohladitvi na zraku s temperature konca valjanja dobro razloči mikrostruktura, ki je nastala iz avstenita, ki je med vtiki rekristaliziral, od mikrostrukture, ki je nastala iz avstenita, ki med vtiki ni rekristaliziral. Nekatera dognanja smo preverili tudi na

Tabela 1: Sestava jekel

konstrukcijskih jeklih druge vrste7. Eno od jekel je bilo industrijsko zvaljano iz gredic 100 x 100 mm v palice z debelino 38 mm in nato v laboratoriju dalje v lamele z debelino 10 mm. Druga jekla smo zvaljali v 5 do 7 vtikih iz gredic 60×60 mm v lamele z debelino 14 mm. Deformacija na vtik je bila vedno nad 15 %, torej zadostna za rekristalizacijo avstenita, če je bilo med vtiki dovolj časa in je bila temperatura zadostna. Presledek med vtiki je bil 8 do 10 sekund. Temperatura valjanja je bila med 1250 in 750 °C. Začetno temperaturo valjanja smo dosegli tako, da smo gredico segreli na 1250 ali 1200°C in jo nato zvaljali ali pa smo začeli valjati po ohladitvi na zraku na nižjo temperaturo. S tem smo dosegli, da je bila v istem jeklu vedno enaka začetna velikost AZ. Po valjanju smo jekla ohladili na zraku. Iz plošč smo pripravili obruske za optično mikroskopijo, preizkušance v smeri valjanja za preverjanje mehanskih lastnosti v valjanem in v normaliziranem stanju in ostružke za določitev količine AIN in NbC po mokri kemijski metodi8.

3. REZULTATI, OPIS IN RAZPRAVA

3.1. Mikrostruktura po valjanju

Na slikah 1 in 2 je prikazana mikrostruktura dveh jekel, zvaljanih pri različnih temperaturah. Evolucija mikrostrukture v odvisnosti od temperature valjanja je v obeh jeklih podobna, morfologija po ohladitvi na zraku pa je nekoliko drugačna zaradi različne kaljivosti. Pri visoki temperaturi valjanja je mikrostruktura iz enakomernih poligonalnih zrn ferita, perlita (in bainita). Ta mikrostruktura je nastala iz poligonalnih in enakomernih zrn avstenita, torej iz avstenita, ki je med valjanjem rekristaliziral. Pri nizki temperaturi valjanja je mikrostruktura iz matriksa manjših zrn istih komponent. V legiranem jeklu najdemo še podolgovata bajnitna zrna, ki so mnogo večja kot zrna v matriksu, v nelegiranem jeklu pa lečaste skupke zrn ferita in perlita, ki po obliki in velikosti odstopajo od zrn v matriksu. Lečasti

Vrsta	Element v %										
TTOTA	С	Mn	Si	Р	S	Cr	Mo	Ni	Nb	Al	N
Č. 4320 A	0,16	1,1	0,29	0,014	0,03	0,95	0,06	0,18	_	0,011	0,009
C. 4320 B	0,17	1,22	0,36	0,014	0,04	0,96	0,07	0,15		0.019	0.0097
C. 4320 C	0,16	1,23	0,26	0,01	0,01	1,01	0,04	0,15		0.037	0.01
C. 4320 F	0,16	1,10	0,25	0,018	0,026	0,98	0,06	0.13		0.025	0.0095
Ç. 1221 G	0,14	0,49	0,19	0,019	0,028	0,12	0,03	0,10	-	0.025	0.009
C. 4320 H	0,14	1,0	0,26	0,015	0,019	0,85	nd	nd	0,02	0.002	0.0078

Slika 1

pov. 100 × Mikrostruktura jekla F, izvaljanega pri dveh temperaturah. Zgoraj: zač. 1180°C – konec 997°C, spodaj: zač. 820°C – konec 753°C. Jeklo je bilo pred začetkom valjanja segrevano pri 1200°C.

Fig. 1

Magn. 100 × Microstructure of steel F, rolled at two temperatures. Above: start 1180 °C - end 997 °C, below: start 820 °C end 753 °C. Before rolling, steel was heated to 1200 °C.

skupki in podolgovata zrna bajnita so nastala iz avstenitnih zrn, ki med valjanjem niso rekristalizirala^{6,7,9,10,11}. Poligonalna in enakomerna zrna v matriksu pa so nastala iz med vtiki rekristaliziranega avstenita, enako kot pri visoki temperaturi valjanja.

V jeklu, ki je bilo po valjanju ohlajeno na zraku, enakomerno pada velikost zrn v mikrostrukturi, nastali iz rekristaliziranega avstenita, ko se znižuje temperatura valjanja (slika 3). Na podoben način se seveda zmanjšuje tudi velikost rekristaliziranih avstenitnih zrn, ko pada temperatura valjanja. V cementacijskem jeklu je intercepcijska dolžina za avstenitna zrna srednje velikosti približno dvakrat večja kot intercepcijska dolžina za mikrostrukturo iz ferita in perlita, ki iz njih nastane pri ohlajanju, torej so avstenitna zrna ca 4 krat večja kot zrna ferita in perlita. To potrjuje tudi slika 12.

Podobno mikrostrukturo dobimo tudi pri industrijskem valjanju pri nižji temperaturi. Na slikah 4 in 5 vidimo mikrostrukturo jekla H, ki je bilo industrijsko zvaljano iz gredice 100×100 mm, in mikrostrukturo istega jekla, ki je bilo zvaljano v laboratoriju. Pri visoki temperaturi valjanja je mikrostruktura v obeh primerih iz enakomernih zrn, pri nižji temperaturi valjanja pa se vidijo dokazi za nepopolno rekristalizacijo avstenita med vtiki. V prvem primeru so iz nerekristaliziranih zrn avstenita nastali pri počasnem ohlajanju debelih palic po

Slika 2

pov. 100 × Mikrostruktura jekla G, izvaljanega pri istih temperaturah kot na sliki 1.

Fig. 2 Magn. 100 × . Microstructure of steel G, rolled at the same temperatures as in Fig. 1

Slika 3

Vpliv temperature valjanja na velikost zrn v jeklih A in C. Polna črta velja za jekli, ki sta bili segreti na 1250 °C in izvaljani z začetkom pri tej temperaturi ali po ohladitvi na nižje začetne temperature, prekinjena črta pa za jekli, ki sta bili segreti neposredno na temperaturo valjanja.

Fig. 3

Influence of the rolling temperature on the grain size in steel A and C. Full line is valid for steel heated to 1250 'C and rolled from that temperature or cooled to lower starting temperatures, dashed line for steel heated directly to the rolling temperature

Slika 4

pov. 100 ×. Mikrostruktura v industrijsko izvaljanem jeklu H. Zgoraj: zač. 1150 °C – konec 980 °C, spodaj: zač. 800 °C – konec 800 °C.

Fig. 4

Magn. 100 ×. Microstructure in the industrially rolled steel H. Above: start 1150 °C - end 980 °C, below: start 800 °C - end 800 °C

Vpliv temperature premene na velikost zrn ferita in perlita v dveh konstrukcijskih jeklih.

Fig. 6

Influence of the transformation temperature on the grain size of ferrite and pearlite in two structural steel

Slika 5

pov. 100 ×. Mikrostruktura jekla H, ki je bilo izvaljano v laboratoriju. Zgoraj: zač. 1144 °C – konec 946 °C, spodaj: zač. 954 °C – konec 823 °C.

Fig. 5

Magn. 100 ×. Microstructure of steel H, rolled in the laboratory. Above: start 1144 °C — end 946 °C, below: start 954 °C end 823 °C

valjanju skupki zrn ferita in perlita, ki so večja kot v okolici, v drugem primeru pa je pri večji hitrosti ohlajanja po valjanju prišlo do premene nerekristaliziranih zrn avstenita v velika podolgovata bainitna zrna. Nižja temperatura premene ustvari v istem jeklu manjša zrna ferita in perlita (slika 6). Pri hitrejšem ohlajanju po valjanju se premena izvrši pri nižji temperaturi. To je vzrok, da so zrna drobnejša, če je bilo isto jeklo zvaljano v laboratoriju, kot če je bilo industrijsko zvaljano (slika 7). Enkrat je bil namreč valjanec lamela z debelino 10 mm, drugič pa okrogla palica z debelino 38 mm. V obeh primerih se velikost na enak način zmanjšuje, ko se znižuje temperatura valjanja. S slike 7 lahko sklepamo, da veljajo za laboratorijsko in za industrijsko valjanje enake zakonitosti, zato je realna primerjava nastalih mikrostruktur.

Lahko torej ugotovimo, da valjanje pri nizki temperaturi ustvarja zaradi nepopolne rekristalizacije med vtiki dvojno mikrostrukturo avstenita. Ta mikrostruktura se v zvaljanem jeklu pokaže v dvojnosti v obliki in v velikosti zrn ferita, perlita in bainita. Na sliki 8 vidimo, da so lastnosti jekla neodvisne od temperature valjanja v normaliziranem in v valjanem stanju. Prelomna površina valjanega jekla je ovalna pri nizki in okrogla pri visoki končni temperaturi valjanja. Dolga os ovala je v ravnini valjanja. Prelomna površina postane ovalna, torej postane razmerje med kratko in dolgo osjo ovala manjše od 1 prav pri temperaturi, ko se v

80

800

Fig. 7

Steel H. Influence of the starting rolling temperature in an industrial mill and in the laboratory on the grain size. Steel was cooled in air after the completed rolling

mikrostrukturi valjanega jekla pokažejo sploščena velika zrna bainita.

Deformacijska anizotropija se torej pojavi v jeklu, ohlajenem s temperature valjanja, tedaj, ko rekristalizacija avstenita med valjanjem ni popolna, podobno kot v konstrukcijskih jeklih⁷.

3.2. Nepopolna rekristalizacija avstenita med vtiki

Pri temperaturah vročega valjanja se močno zmanjšuje topnost AIN in NbC v avstenitu. Vzporedno z odpravo deformacijske energije se iz avstenita izločata zato tudi obe disperzoidni fazi. Velja, da sta hitrosti izločanja in rasti izločkov mnogo hitrejši med deformacijo in v nerekristaliziranem avstenitu, kot v rekristalizira-nem ali v nedeformiranem avstenitu^{13,14}. Na sliki 9 vidimo, da je razmerje debelina proti dolžini za velika podolgovata bainitna zrna v laboratorijsko zvaljanem jeklu neodvisno od temperature valjanja. V mejah natančne določitve v mikroskopu se ujema s celotnim podaljškom jekla pri valjanju. To pomeni, da so bainitna zrna nastala iz zrn avstenita, ki niso rekristalizirala že po prvem vtiku. Ni torej upravičena domneva, da ni rekristalizacije v nadaljevanju valjanja, ker so nerekristalizirana zrna trša in zato sprejemajo manjšo deformacijo kot rekristalizirana okolica16, kljub temu da sprememba relativne plastičnosti sulfidnih vključkov med valjanjem kaže, da se zaradi nepopolne rekristalizacije poveča trdota avstenita med valjanjem6.

Velja torej, da avstenitna zrna, ki ne rekristalizirajo po prvem vtiku, ne rekristalizirajo tudi v nadaljevanju valjanja, kljub temu da sprejemajo več in več deformacijske energije. To se dogaja vsaj nekaj časa, medtem ko v njihovi okolici po vsakem vtiku ponovno rekristalizira avstenit, ki je že rekristaliziral po prvem vtiku. Vzrok, zakaj med prvim in drugim vtikom rekristalizira samo del avstenitnih zrn, je hitrejši proces rekristalizacije manjših zrn^{1,2}. Ker je med prvim in drugim vtikom na

VALJANO

d mn / d maks

dmin.

Slika 8

Jeklo H. Odvisnost med temperaturo valjanja v laboratoriju in lastnostmi jekla v valjanem in v normaliziranem stanju. T – raztržna trdnost, MP – meja plastičnosti, R – raztezek, K – kontrakcija, dmin./dmaks. – razmerje osi eliptičnega preloma.

Fig. 8

Steel H. Relationship between the rolling temperature in the laboratory and the properties of steel, as rolled and as normalized. T — tensile strength, MP — yield point, R — elongation, K — contraction, dmin./dmaks. — axis ratio of elliptical fracture

Jekli G in F. Odvisnosti med temperaturo valjanja in razmerjem med dolžino in debelino podolgovatih bainitnih zrn (K) in številom teh zrn na enoto površine vzdolžnega preseka valjanca. Podaljšek jekla F pri valjanju: K \approx 4, podaljšek jekla G pa K = 3,8.

Fig. 9

Steel G and F. Relationships between the rolling temperature and the length/thickness ratio of elongated bainite grains (K), and the number of those grains per unit area of the longitudinal rolling cross section. Elongation of steel F in rolling: $K \approx 4$, elongation of steel G:K = 3.8 voljo le omejen čas, ostaja nerekristalizirano v nekem jeklu tem več avstenita, čim večja je začetna povprečna velikost zrn in čim nižja je temperatura. Hitrost rekristalizacije namreč pada, ko se znižuje temperatura^{1,2,4}.

Na sliki 9 vidimo, da v dveh jeklih, eno ima kot disperzoid AlN, drugo pa NbC, število zrn austenita, ki med valjanjem niso rekristalizirala, hitro zraste pod neko začetno temperaturo do določene velikosti, nato pa celo rahlo pada, ko se dalje znižuje temperatura valjanja. Važna razlika med jekloma na sliki je v tem, da se v jeklu brez niobija nerekristalizirana zrna avstenita pojavijo pri višji začetni temperaturi valjanja.

Če hočemo odvisnost na sliki 9 razumeti, si moramo biti najprej na jasnem o tem, kaj se med valjanjem dogaja z obema disperzoidoma, AIN in NbC. Kljub temu da zaradi deformacijsko inducirane precipitacije nastajata oba disperzoida med valjanjem hitreje kot med ohlajanjem brez deformacije, nastane med valjanjem cementacijskega jekla razmeroma malo AlN. Odvisnost med temperaturo valjanja in količino AlN na sliki 10 je zelo podobna kot v konstrukcijskih jeklih brez niobija7. V področju temperature, ko se pojavijo nerekristalizirana zrna avstenita med valjanjem, ni spremembe v količini AIN. Primerjava slik 9 in 10 pove, da izločki AIN, ki nastajajo med valjanjem, ne vplivajo zaznavno na rekristalizacijo avstenita med valjanjem, pač pa ti izločki, sodeč po viru 16, zavirajo rast rekristaliziranih zrn avstenita med valjanjem.

Odvisnosti med številom nerekristaliziranih zrn avstenita med valjanjem in temperaturo pri jeklu F ne moremo razlagati, kot da se zaradi tvorbe AlN med valjanjem dogodi nekaj, kar najprej močno, nato pa šibkeje vpliva na rekristalizacijo avstenita. Zaviranje rekristali-

Vpliv temperature valjanja na količino AlN v jeklih B in C. I – jekla izvaljana po segrevanju na 1250 °C z začetkom pri tej temperaturi ali z po ohladitvi na nižje označene temperature, II – jekla izvaljana po segrevanju na označene začetne temperature.

Fig. 10

Influence of the rolling temperature on the amount of AIN in steel B and C. I — steel rolled after heating to 1250 °C with start at this temperature or at a lower marked temperature after cooling, II — steel rolled after heating to the marked starting temperature zacije je najučinkovitejše, ko se temperatura začetka valjanja zniža v zelo ozkem intervalu, kjer ni, kot je že omenjeno, nobenega preloma odvisnosti med temperaturo valjanja in količino AIN. Drži torej, da ni povezave med pojavom nepopolne rekristalizacije in tvorbo AIN. Razlaga nepopolne rekristalizacije je torej v soodvisnosti med temperaturo in procesi odprave deformacijske energije iz kovine.

Pred rekristalizacijo se vedno izvrši poprava, ki je podobno, kot velja za rekristalizacijo, hitrejša, torej bolj učinkovita pri višji temperaturi. Pri nižji temperaturi je zato kopičenje deformacijske energije v deformiranih zrnih večje. To povzroči po več vtikih tolikšno povečanje gonilne sile za rekristalizacijo, da se po enem od vmesnih vtikov rekristalizirajo tudi nekatera zrna, ki po prvem vtiku niso rekristalizirala. To razlaga, zakaj število nerekristaliziranih zrn ne raste več, ko se zniža temperatura valjanja pod določeni nivo.

Dogajanja so podobna v jeklu H, ki je mikrolegirano z niobijem, vendar se rekristalizacija zavre že pri višji temperaturi začetka valjanja. Vzrok za temperaturni zamik je zadrževalen vpliv niobija v trdni raztopini na rekristalizacijo avstenita. V temperaturnem intervalu, ko se pojavlja med valjanjem nerekristalizirani avstenit, je hitrejša tvorba NbC (slika 11). Niobij se izloča iz trdne raztopine, s tem se zmanjšuje učinkovitost zadrževanja rekristalizacije in razmere za rekristalizacijo se bližajo tistim, ki veljajo za jeklo z enako osnovno sestavo.

Slika 11

Odvisnost med temperaturo valjanja in deležem niobija, ki se je vezal v karbonitrid med valjanjem jekla. Spodnje merilo velja za končno temperaturo valjanja v laboratoriju.

Fig. 11

Lahko ugotovimo, da je v jeklu brez niobija odvisnost med temperaturo in številom nerekristaliziranih zrn avstenita med vtiki funkcija odvisnosti temperatura valjanja — procesi izločanja deformacijske energije iz avstenita, v jeklu z niobijem pa se temu pridružuje še vpliv siromašenja avstenita z niobijem v trdni raztopini na račun tvorbe NbC med valjanjem. Sodeč po slikah 9 in 11, se odpornost proti rekristalizaciji avstenita približuje tisti, ki je značilna za osnovno sestavo jekla, ko se količina niobija v trdni raztopini zmanjša na okoli 0,005 %.

3.3. Mehanizem stabilizacije zrn nerekristaliziranega avstenita med valjanjem

Pri premeni deformiranih zrn avstenita nastajajo drobnejša zrna ferita in perlita, kot pri premeni enako velikih rekristaliziranih ali nedeformiranih zrn avstenita17. Hitrejšo premeno dobimo zaradi hitrejše nukleacije, ki jo pospeši deformacijska energija v kovini19. V preiskanih jeklih se to ni pokazalo, ker je bila začetna velikostna razlika prevelika, da bi se lahko kompenzirala s hitrejšim kaljenjem ferita. Na osnovi razprave je mogoče oceniti, da je bila razlika v velikosti po končanem valjanju med rekristaliziranimi in nerekristaliziranimi zrni avstenita okoli 5 razredov, po premeni pa je razlika le pribl. 1 razred po ASTM. Zaradi hitrejše premene se je razlika torej zmanjšala za okoli 4 razrede ASTM. To sklepanje je seveda čisto kvalitativno, saj je vprašljivo, ali se lahko pripiše določen velikostni razred zrnom, ki so zaradi deformacije močno sploščena. Opazovanje v TE mikroskopu je na ekstrakcijskih replikah pokazalo, da so izločki neenakomerno porazdeljeni; ponekod jih je v feritu več, drugod pa manj. Ker je proces izločanja hitrejši v deformiranem avstenitu, sklepamo, da najdemo izločke predvsem tam, kjer avstenit med valjanjem ni rekristaliziral, zato odvisnost na sliki 10 kaže le neko povprečno sliko procesa izločanja. Prisotnost izločkov ni znak zaviranja rekristalizacije, nastali so prav zato, ker rekristalizacije ni bilo, so torej posledica, ne pa vzrok.

Viri^{10,11} navajajo dve razlagi za obstojnost nerekristaliziranega avstenita med valjanjem. Ena je, da rekristalizacije ni zato, ker je že deformirani avstenit trši od rekristalizirane okolice in zato sprejema manjšo deformacijsko energijo kot okolica, ko se valjanje nadaljuje. To razlago smo že ovrgli. Druga razlaga je, da rekristalizacijo zavirajo izločki disperzoidov. Dva razloga kažeta, da tudi ta razlaga ne drži. Omenili smo že, da so izločki posledica, zato ne morejo biti vzrok zadrževanja rekristalizacije. Primerjava slik 9, 10 in 11 pa pokaže, da je nerekristaliziranih zrn avstenita manj pri nižji temperaturi, ko je v jeklu več izločkov AlN in NbC.

Zaključke te raziskave in literaturne podatke lahko vskladimo z naslednjo razlago stabilizacije nerekristaliziranega avstenita med valjanjem jekla. Med prvim in drugim vtikom največja zrna ne rekristalizirajo zato, ker je med obema vtikoma prekratek presledek, in zato, ker je rekristalizacija takih zrn počasnejša. Temperatura, pri kateri je rekristalizacija med prvim in drugim vtikom nepopolna, je odvisna od sestave jekla. Manjša zrna avstenita rekristalizirajo med vtikoma v nova zrna, katerih velikost se zmanjšuje, ko se niža temperatura valjanja. Po drugem vtiku avstenit, ki je rekristaliziral po prvem vtiku, znova rekristalizira. Rekristalizacija je lahko zelo hitra, če pospeševalen vpliv zmanjšanje velikosti zrn prevlada nad zadrževalnim vplivom temperature. V zrnih, kjer po prvem vtiku ni bilo rekristalizacije, te ni tudi po drugem vtiku, kljub povečani skupni deformaciji. Logična je predpostavka, da poprava zniža nivo notranje energije kovine pod nivo, ki je potreben, da bi se rekristalizacija lahko izvršila v presledku časa med vtikoma. Popravo spremlja nastanek poligonizirane strukture s številnimi podmejami znotraj enega zrna avstenita. Mrežne napake, ki jih je ustvarila deformacija, se hitro potopijo v teh podmejah, saj so difuzijske poti kratke znotraj istega sploščenega zrna avstenita. Ta proces se ponavlja toliko časa, dokler poprava v deformiranih zrnih avstenita drži nivo notranje energije pod nivojem, ki je potreben za rekristalizacijo. Ko pa je pri še nižji temperaturi počasnejša tudi poprava, se po vsakem vtiku v sploščenih zrnih deformacijska energija kopiči do meje, da med valjanjem v posamičnih zrnih preseže nivo gonilne sile za rekristalizacijo in taka zrna rekristalizirajo. Proces se ponavlja po vsakem vtiku. Temperatura nepopolne rekristalizacije je odvisna od sestave jekla, ker legirni elementi zavirajo proces izločanja deformacijske energije iz avstenita.

Kljub temu, da se proces poprave ponavlja po vsakem vtiku in je zato poligonizacijska substruktura v deformiranih zrnih vse bolj urejena, ostajajo sploščena avstenitna zrna individualne celote. Zato se lahko pri primerni hitrosti ohlajanja spremenijo kot celota v bainitna zrna.

3.4. Mikrostruktura po normalizaciji

Ohranjanje deformacijske energije v jeklu zaradi nepopolne rekristalizacije avstenita med valjanjem v več vtikih ustvari neenakomerne pogoje za nastajanje in rast izločkov disperzoidov. Ti so večji v avstenitnih zrnih, ki med valjanjem niso rekristalizirala. To je vzrok, da je v jeklu po avstenitizaciji tem več anormalno zrastlih avstenitnih zrn, čim nižja je temperatura valjanja (slika 12). Pri tem pa je povprečna velikost zrn v enakomernem matriksu neodvisna od temperature valjanja. Pri ohlajanju s temperature avstenitizacije lahko velika avstenitna zrna premenijo v bainit ali skupine večjih zrn ferita in perlita, zato je mikrostruktura normaliziranega jekla tem bolj neenakomerna, čim nižja je temperatura valjanja. Neenakomernost te vrste pa se pojavlja le v jeklih z malo disperzoidne faze, v preiskovanih jeklih za cementacijo še pri 0,02 % Al, ni pa je več pri 0.04% Al9. V jeklih, ki so bolj odporna proti rasti avstenitnih zrn kot krom-manganovo jeklo za cementacijo, nenormalne rasti zrn avstenita zaradi nizke temperature valjanja ni tudi pri okoli 0,02 % Al18.

Začetna temperatura valjanja,°C

Slika 12

Odvisnost med začetno temperaturo valjanja jekla H na industrijski valjarni in v laboratoriju in velikostjo avstenitnih zrn pri ponovni avstenitizaciji pri 920 °C, velikostjo zrn po normalizaciji in deležem abornalno zrastlih avstenitnih zrn na enoto površine (ZAZ).

Fig. 12

Relationship between the starting rolling temperature for steel H in an industrial mill and in the laboratory, and the austenite grain size after the repeated austenitising at 920 °C, grain size after normalizing, and the fraction of abnormally grown austenite grains per unit area (ZAZ)

ŽEZB 18 (1984) štev. 1

4. POVZETEK IN SKLEPI

Krom-manganovo in ogljikovo jeklo za cementacijo smo v več vtikih izvaljali pri temperaturah med 1250 in 750°C, raziskali nastale mikrostrukture ter opredelili tvorbo AlN in NbC med valjanjem.

Pri visoki temperaturi valjanja popolna rekristalizacija avstenita med vtiki ustvari enakomerno poligonalno mikrostrukturo jekla v valjanem in v normaliziranem stanju. Od neke temperature valjanja navzdol hitro zraste število zrn avstenita, ki med vtiki ne rekristalizirajo, doseže neko največjo vrednost, nato pa se počasi zmanjšuje, ko se dalje znižuje temperatura valjanja jekla.

Nepopolna rekristalizacija avstenita med valjanjem ustvari v valjanem jeklu heterogeno mikrostrukturo, deformacijsko anizotropijo in je vzrok za neenakomernost v procesu tvorbe izločkov AIN in NbC med valjanjem.

Avstenitna zrna, ki po prvem vtiku ne rekristalizirajo, ne rekristalizirajo tudi v nadaljevanju valjanja, razen če temperatura valjanja ne pade tako nizko, da je proces izločanja deformacijske energije s popravo prepočasen, da bi lahko od več vtikov nakopičeno notranjo energijo deformiranih zrn znižal pod prag, ki sproži rekristalizacijo v presledku časa med dvema vtikoma. Po vsakem vtiku rekristalizirajo avstenitna zrna, ki so rekristalizirala po prvem vtiku. Vzrok za različnost v rekristalizaciji po prvem vtiku je različna začetna velikost avstenitnih zrn. Poprava namreč ustvarja v deformiranih zrnih avstenita poligonizacijsko substrukturo, ki hitro resorbira mrežne napake, nastale pri preoblikovanju jekla.

Viri

1 I. Kozasu, C. Ouchi, T. Sampei in T. Okita: Micro Alloying 75, UCC, New York, 1975, 120.

- 2 T. Tanaka, N. Tabata, T. Hatomura in C. Chiga: Ibidem, 107.
- 3 A. le Bon, J. Rofes-Vernis in C. Rossard: Metal Science 9, 1975, 36,
- 4 F. Vodopivec, F. Vizjak, S. Senčič, G. Manojlovič in D. Gnidovec: Železarski Zbornik 15, 1981, 203.
- 5 R. A. Petković, M. J. Luton in J. J. Jonas: Canadian Metallurgical Quarterly 14, 1975, 137.
- 6 F. Vodopivec in M. Gabrovšek: Metals Technology 7, 1980, 186.
- 7 F. Vodopivec, M. Gabrovšek in J. Žvokelj: Železarski Zbornik 17, 1983, 17.
- 8 A. Osojnik, T. Lavrič in F. Vodopivec: Železarski Zbornik 14, 1980, 87.
- 9 F. Vodopivec, A. Rodič in J. Rodič: Železarski Zbornik 16, 1982, 111.
- 10 J. D. Jones in A. B. Rothwell: ISI Publication 108, The Iron and Steel Institute, London, 1968, 78.
- 11 F. Vodopivec, F. Vizjak, S. Senčič, G. Manojlovič in D. Gnidovec: Železarski Zbornik 15, 1981, 237.
- 12 T. Gladman, D. Dulieu in J. McIvor: Micro Alloying 75, UCC, New York, 1977, 32.
- 13 I. Weiss in J. J. Jonas: Metallurgical Transactions 11 A, 1980, 403.
- 14 J. J. Jonas in I. Weiss: metal Science 3, 1979, 238.
- 15 T. Gladman in F. B. Pickering: Journal of ISI 205, 1967, 653.
- 16 W. B. Morrison: Scandinavian Journal of Metallurgy 9, 1980, 83.
- 17 W. Roberts: Ibidem 9, 1980, 13.
- 18 F. Vodopivec, J. Žvokelj, A. Rodič in J. Rodič: Posvet »Valcuvanje na černi i cvetni metalurgiji«, Sofija 1983, bo objavljeno.
- 19 M. Kmetič, F. Vodopivec in M. Gabrovšek: Železarski Zbornik 14, 1980, 39.

ZUSAMMENFASSUNG

Chrom Mangan legierte und Kohlenstoffeinsatzstähle sind bei der Temperatur zwischen 1250 und 750°C in mehreren Stichen ausgewalzt worden. Das dabei entstehende Mikrogefüge ist bestimmt worden und die während des Walzvorganges entstehenden Mengen von AIN und NbC sind nach dem nasschemischen Verfahren analisiert worden.

Durch die vollkommene Rekristallisation von Austenit zwischen den Stichen bei hoher Walztemperatur ensteht ein gleichmässiges polygonales Mikrogefüge im gewalzten und im normalisierten Zustand. Von einer gewissen Temperatur abwärts wähst die Menge von Austenit die während des Walzvonganges nicht rekristalliesiert sehr schnell, erreicht einen höchsten Wert, fällt dan allmählich langsam so wie die Walztemperatur weiter fällt.

Die Austenitkörner die nach dem ersten Stich nicht rekristallisieren, rekristallisieren auch nicht beim weiteren Walzvorgang trotz dem, dass die gesamte Verformang wähst. Dieser Vorgang verläuft so lange bis die Walztemperatur nicht so weit abfällt, dass, die Ausscheidung der Deformationsenergie mit der Erhohlung zu langsam ist um die von mehreren Stichen angehäufte Verformungsenergie unter das Niveau zu senken, wo die Rekristellisation zwischen zwei Stichen ausgelöst wird.

Die Stabilität wird dem Verformten Austenit während des Walzvorganges durch den schnellen Erholungsvorgang gegeben, welcher vor der Rekristallisation in verformten Körnern eine polygonisationssche Substruktur bildet in welcher schnell die durch die Verformung verursahten Fehler des Kristallnetzes versenken.

Nach jedem Stich rekristallisieren diese Austenitkörner, die nach dem erstem Stich rekristalliert haben, da die Rekristallisation um so schneller ist je kleiner die Körner sind.

Im Temperaturbereich in welchem die Rekristallisation von Austenit unvoll kommen wird, wird die Bildung von AlN nicht grösser, die Bildung von NbC wird aber schneller. Die Ermittlungen zeigen aber nicht, dass AlN oder NbC die primären Ursachen für die Stabilisierung des nichtrekristallisierten Austenites wären.

Die unvollkommene Rekristallisation von Austenit ist die Ursache für das heterogene Mikrogefüge des Stahles im gewalzten und normalisierten Zustand, den die Zahl der bei der Austenitsation nichtnormalgewahsenen Austenitkörner wird um so grösser je niedriger die Walztemperatur war. Im gewalzten Zustand ist die Heterogenität die eine Folge der unvollkommenen Rekristallisation von Austenit während des Walzvorganges ist, die Ursache für die Vervormungsanisotropie, derentwegen der Stahl in der Walzebene schweren verformt wird als senkrecht an diese.

SUMMARY

Chromium-manganese and carbon case-hardening steel was rolled in few passes between 1250 and 750 °C. The formed microstructures were determined, and the amounts of AlN and NbC formed in rolling were analyzed by the wet chemical analysis.

At high rolling temperatures the complete recrystallisation of austenite between passes forms an uniform polygonal microstructure in the rolled and in the normalized samples. Below some temperature the amount of austenite not recrystallized during rolling increases fast, it reaches some maximum, then it is slowly reduced with the further decreasing rolling temperature.

The austenite grains, not recrystallized after the first pass, do not recrystallize in further rolling though the total deformation increases. This takes place till the rolling temperature is not reduced to such an extent that the liberation of strain energy by the recovery is to slow that in several passes piled strain energy could be reduced under the threshold for triggering the recrystallisation between the passes. The stability of the strained austenite in rolling is achieved by the rapid recovery which still before the recrystallisation forms a polygonal substructure in deformed grains, and in that substructure the lattice defects, formed furing the deformation are quickly dissolved.

After each pass, the austenite grains, recrystallized after the first pass, recrystallize again since the recrystallisation is the faster the smaller are the grains.

In the temperature region where the recrystallisation of austenite is not complete, no increased formation of AIN was observed, but formation of NbC was faster.

But the findings do not show that AIN or NbC could be the primary reasons for the stabilisation of the nonrecrystallized austenite.

The incomplete recrystallisation of austenite during rolling causes the heterogeneous microstructure of steel, as rolled and as normalized. In austenitising the number of unnormally grown austenite grains was the greater the lower was the rolling temperature. In the rolled state the heterogeneity as the consequence of incomplete recrystallisation of austenite during rolling causes the strain anisotropy, and thus the steel can be leas easily deformed in the plane of rolling than perpendicularly to that plane.

ЗАКЛЮЧЕНИЕ

Устойчивость деформационного аустенита во время прокатки получается вследствии быстроты в той фазе процесса, в которой до рекристаллизации деформированных зерен образуется полигонометрическая субструктура, в которой быстро исчезают погрешности кристаллической сети, образовавшиеся в течении деформации.

Рекристаллизация аустенитных зерен происходит тем быстрее, чем меньше величина зерен. В области температуры где рекристаллизация аустенита становиться неполная не замечено увеличение образования AIN, но увеличивается быстрота образования NbC. Результаты исследований не показывают, что AIN или NbC могли бы быть главными реактивами для стабилизации нерекристаллизированного аустенита.

Неполная рекристаллизация аустенита во время прокатки вызывает образование гетерогенной микроструктуры в катаном и в нормализованном состоянии. Известно, что во время аустенитизации количество неправильно выросщих аустенитных зерен тем больше, чем ниже была температура прокатки.

Гетерогенность в катаном состоянии, как последствие недостаточной рекристаллизации аустенита во время прокатки вызывает деформационную анизотропность, вследствии чего деформация стали по плоскости прокатки более затруднительна, чем прямоугольно на плоскость. В статье рассмотрено выполнение прокатки Cr-Mn и углеродистых цементуемыех сталей при темп-ах между 1250 и 750°С при нескольких пропусках. Определены полученные микроструктуры и, при помощи мокрого химического анализа установлено количество AIN и NbC, которые образовались во время прокатки.

Во время прокатки при высокой темп-ре полная рекристаллизация аустенита между пропусками вызывает образование равномерную полигональную микроструктуру в катаном и нормализованном состоянии. Ниже некоторой определенной темп-ры быстро образуется готовое количество аустенита, которое во время прокатки не рекристаллизируется, достигает некоторое максимальное значение после чего медленно уменьшается во время понижения темп-ры прокатки.

Аустенитные зерна, которых рекристаллизация на наступила после первого пропуска не рекристаллизируются также и при продолжении прокатки несмотря на увеличение общей деформаци. Это происходит до того промежутка времени когда температура прокатки достигнит тот низкий предел, при котором выделение деформационной энергии, несмотря на корректуру будет происходить слишком медленно, так что и собранная деформационная энергия от нескольких пропусков не в состоянии выполнить срабатывание рекристаллизации между пропусками.

Vpliv stopnje predelave na lastnosti konti jekla

UDK: 621.771.016:620.183:620.184 ASM/SLA: F 23 p, P, D 92

D. Kmetič, ' F. Vodopivec, ' F. Vizjak, ' F. Haler'

Stopnja predelave je pri proizvodih, izvaljanih iz kontinuirno ulitih gredic, bistveno manjša, kot če so ti izvaljani iz konvencionalnega jekla, ulitega v ingote. Razlikovati moramo stopnjo predelave, ki je potrebna za odpravo notranjih napak, in stopnjo predelave, od katere sta odvisni mikrostruktura in lastnosti jekla.

1. UVOD

V Železarni Štore že nekaj let izdelujejo kvalitetna jekla za predelovalno industrijo po postopku konti litja. Zato je pomembno, da opredelimo uporabnost konti jekel, ki je odvisna od stopnje predelave.

Konti jeklo ima v litem stanju določene značilnosti in nekatere od njih so vzrok za slabšo kvaliteto jekel. To so predvsem notranje razpoke, porozna sredina in neugodna porazdelitev večjih nekovinskih vključkov. Te napake se pri zadostni stopnji vroče predelave večinoma zavaljajo, oz. tako porazdelijo po preseku, da ne vplivajo na uporabnost jekla.

Stopnja predelave vpliva tudi na mikrostrukturo jekla. Zato mora minimalna stopnja predelave zagotoviti rekristalizirano mikrostrukturo s potrebno velikostjo primarnih in sekundarnih kristalnih zrn. Za velikost kristalnih zrn je pomembna predvsem stopnja predelave po zadnjem ogrevanju za valjanje, končna temperatura valjanja in hitrost ohlajanja po koncu valjanja.

Iz teh razlogov je potrebno obravnavati stopnjo predelave z več stališč

eno je stopnja predelave, ki zagotavlja odpravo notranjih napak ali njihovo zmanjšanje na mejo, ki ne vpliva na uporabnost jekla,

drugo je minimalna stopnja predelave, ki zagotavlja rekristalizirano strukturo s potrebno velikostjo kristalnih zrn.

tretje je hitrost ohlajanja po valjanju; pri počasni hitrosti ohlajanja rekristalizirana zrna avstenita lah-

ko nezanemarljivo zrastejo, zaradi česar je bolj groba tudi mikrostruktura v valjanem stanju.

2. EKSPERIMENTALNO DELO

Na osnovi proizvodnega programa Železarne Štore smo za preiskave izbrali naslednje vrste jekel:

cementacijski jekli Č. 1221 in Č. 4320 jekla za poboljšanje Č. 1431, Č. 1531 in Č. 4830 vzmetni jekli Č. 2331 in Č. 4230

Kemična sestava jekel je prikazana v tabeli 1.

Casovno-temperaturni pogoji valjanja na valjarniški progi ne dovoljujejo, da bi istočasno zajeli stopnjo predelave, potrebno za zmanjšanje notranjih napak na sprejemljivo mejo, in minimalno stopnjo redukcije, ki zagotavlja ustrezno velikost primarnih in sekundarnih kristalnih zrn.

Homogenost jekel smo opredelili v litem in valjanem stanju. Brušene gredice, dimenzije 100 × 100 mm, smo v devetih vtikih zvaljali v palice Ø 36 mm. Homogenost valjancev smo zasledovali na vzorcih, ki smo jih prestregli po tretjem, petem, sedmem in zadnjem vtiku. Gredice so bile pred valjanjem ogrete na 1150°C. Temperature valjancev pri vtikih, kjer smo rezali vzorce, so se med seboj le malo razlikovale, ker je valjanje potekalo brez zastojev. Dimenzije valjancev, stopnja redukcije in njihove povprečne temperature pri teh vtikih so prikazane v tabeli 2.

Tabela 2

Vtik	Dimenzija valjanca (mm)	Stopnja redukcije	Temperatura valjanca (°C)		
	100×100	_	1150		
3	65×65	2,4:1	1060		
5	49×49	4.2:1	1050		
7	40×40	6.3:1	990		
9	Ø36	9,8:1	960		

Tabela 1: kemična sestava jekel v o	dstatki	h
-------------------------------------	---------	---

Oznaka	Vrsta jekla	С	Si	Mn	Р	S	Cr	v	Nb	Cu
1	Č.1221	0.17	0.34	0.44	0.013	0.027	_		_	0.24
2	C.4320	0.14	0.26	1.0	0.015	0.019	0.85		0.02	0.18
3	C.4320	0.17	0.28	1.03	0.017	0.015	1.04		_	0.11
4	C.1431	0.33	0.34	0.65	0.013	0.045	_		_	0.33
5	C.1531	0.43	0.40	0.68	0.011	0.013	_			0.16
6	Ç.1531	0.46	0.33	0.56	0.011	0.023				0.30
7	C.4830	0.50	0.28	0.82	0.008	0.011	0.94	0.15		0.25
8	C.2331	0.58	1.50	0.81	0.008	0.019				0.16
9	C.4230	0.64	1.34	0.57	0.011	0.027	0.48			0.20

SZMetalurški Inštitut

2 SZ Železarna Štore

Na vzorcih smo pri stopnjah redukcije 2,4:1 in 9,8:1 določili, kako različna stopnja predelave vpliva na velikost avstenitnih zrn in na normalizirano mikrostrukturo.

Velikost avstentnih zrn, rast avstentnih zrn po rekristalizaciji in vpliv primarne strukture na normalizirano pa smo analizirali na vzorcih, skovanih na 8 × 16 mm, ki smo jih po 30 % deformaciji v temperaturnem intervalu od 1200 do 900 °C takoj gasili v vodi oz. zadržali na deformacijski temperaturi in nato ohladili.

3. HOMOGENOST JEKEL

Baumannovi odtisi so pokazali, da gredice nimajo izrazitega likvacijskega kvadrata. Večji sulfidni ali kompleksni vključki se najpogosteje pojavljajo ob tisti stranici, kjer je talina dalj časa tekoča, in sicer na meji med hitro strjeno robno in transkristalno cono. Posamezne večje vkjučke smo opazili tudi na sredini, pogosteje v porozni sredini, in ob radialnih razpokah (sl. 1, 2). Pri valjanju se oblika vključkov spremeni.

Slika 2 Baumannovi odtisi lite gredice in valjancev po tretjem in sedmem vtiku — jeklo Č. 1221

Fig. 2

Sulphur printing of cast billet and the rollings afther the third and the seventh pass — Č. 1221 steel

Slika 1 Baumannovi odtisi lite gredice in valjancev po sedmem in devetem vtiku — jeklo Č. 4320 (vzorec 2)

Fig. 1

Sulphur printing of cast billet and the rollings after the seventh and the ninth pass — Č. 4320 steel (sample 2)

Ker se razpotegnejo v smeri deformacije, se njihova debelina zmanjša. razporeditev vključkov po preseku pa se bistveno ne spremeni, le v posameznih primerih se zaradi toka materiala v kalibrih vključki premaknejo proti površini. Če so vključki zbrani ob porozni sredini ali ob radialnih razpokah, lahko ostane ta razporeditev vidna tudi do končne dimenzije valjancev (sl. 2).

Na jedkalnih ploščah so se še močneje odkrile iste napake kot na Baumannovih odtisih, dobro pa se vidijo tudi kristalizacijske značilnosti. Gredice so brušene, zato je na površini le tanka cona globularnih kristalov, ki se nadaljuje v približno 10 mm debelo plast drobnih podolgovatih kristalov, ki so že pravokotno usmerjeni na površino. Tej hitro strjeni plasti sledijo veliki stebrasti kristali transkristalne cone. Oblika teh con, pa tudi cone poligonalnih kristalov na sredini gredic, je odvisna od pogojev strjevanja in vrste jakla, zato je pri vzorcih različno izrazita (sl. 3). Pri valjanju se lita struktura

Slika 3 Makrostruktura litih gredic jekel Č. 1221 in Č. 2331

Fig. 3 Macrostructure of cast billets of Č. 1221 steel and Č. 2331 steel

že po tretjem vtiku močo zabriše, ali pa je sploh več ne opazimo, odvisno od tega, kako izrazito je bila izoblikovana transkristalna cona. Po petem vtiku, ko znaša stopnja redukcije 4,2:1, pa lite strukture ne opazimo v nobenem primeru (sl. 4, 5).

Večina jedkalnih plošč ima porozno sredino in tudi radialne razpoke so pogoste. Makrojedkanje vzorcev, odrezanih med valjanjem, je pokazalo, da se radialne razpoke in porozna sredina hitro zavarijo. Že pri stopnji redukcije 2,4:1 teh napak večinoma nismo več opazili, vendar pa je gostota in velikost nekovinskih vključkov na teh mestih pogosto večja. Na nekaterih valjancih se po tretjem, petem, sedmem in tudi po zadnjem

Slika 4 V makrostrukturi valjanca se po tretjem vtiku opazijo znaki lite strukture (Č. 2331)

Fig. 4

In the macrostructure of the rolling after the third pass, the remants of the cast structure can be seen (Č. 2331)

vtiku vidi, kot da se po sredini vlečejo razpoke (sl. 5, Č. 1221). Natančnejši pregled z biokularnim mikroskopom je pokazal, da je na teh mestih gostota jamic, ki so nastale pri makrojedkanju, nekajkrat večja kot sicer po ostalem vzorcu. Tudi na obrusih, ki smo jih naredili na teh mestih, nismo opazili nobenih razpok. Ta mesta ne predstavljajo diskontinuitete materiala, pač pa le mesta, bogata z nekovinskimi vključki in oligoelementi, ki se zato močneje jedkajo. Prave razpoke nastanejo v valjancih le na mestih, kjer je površina razpok ali porozne sredine pri ogrevanju gredic oksidirala in se zato pri valjanju niso zavarila.

Razporeditev nekovinskih vključkov na meji med robno in transkristalno cono, ob porozni sredini in radialnih razpokah kažejo, da pri valjanju ne pride do opaznejše prerazporeditve materiala po preseku valjanca. Le v posameznih primerih privede tok materiala večje nekovinske vključke na površino ali tik pod njo (sl. 6). Oblika radialnih razpok, porozne sredine in gostota vključkov se od mesta do mesta močno spreminjajo in so različne tudi pri različnih jeklih. To kaže, da so te značilnosti odvisne predvsem od pogojev litja.

4. MIKROSTRUKTURA JEKEL

Lastnosti jekel so odvisne od homogenosti gredic, ki je odvisna od kvalitete litja in stopnje predelave, pa tudi od velikosti primarnih ali sekundarnih kristalnih zrn, glede na to, kako je bilo jeklo toplotno obdelano.

Na vzorcih, odrezanih med valjanjem, je težko odkriti austenitna zrna. Da bi ugotovili, kako različna stopnja redukcije vpliva na velikost avstentnih in normaliziranih zrn, smo vzorce jekel, zvaljanih pri različnih stopnjah redukcije, toplotno obdelali pri istih temperaturah kot trgalne preizkušance.

Velikost avstentnih zrn je odvisna od stopnje predhodne deformacije. Pri stopnji predelave, manjši od

Slika 5 Makrostruktura valjancev jekel Č. 1221 in Č. 2331 po petem vtiku

Fig. 5 Macrostructure of the rollings of Č. 1221 and Č. 2331 steel after the fifth pass

5:1, je mikrostuktura nehomogena in avstenitna zrna se med seboj razlikujejo za nekaj razredov ASTM (sl. 7). Mikrostrukturni pregled vzorcev je pokazal, da valjanci do te stopnje redukcije niso enakomerno deformirani po celem preseku. Temperature so pri začetnih redukcijah visoke in avstenitna zrna lahko občutno zrastejo. Tudi izceje vplivajo na izoblikovanje mikrostrukture. Vse to toliko vpliva na mikrostrukturo, da ta kljub ponovnemu ogretju vzorcev ni enakomerna. Pri večji stopnji redukcije pa je velikost avstentnih zrn po preseku enakomernejša, pri čemer moramo upoštevati tudi nižje končne temperature valjanja. Tudi pri vzorcih, ki smo jih normalizirali, se v mikrostrukturi pozna vpliv stopnje predhodne deformacije in končne temperature valjanja. Če je ta manjša od 5:1, so pri cementacijskih jeklih normalizirana zrna večja kot pri vzorcih, ki so bili valjani pri večjih stopnjah deformacije, in s tem tudi pri nižjih temperaturah. Pri jeklu Č. 4320 pa je bistveno drugačna tudi porazdelitev feritnih in perlitnih področij. Šele pri večjih stopnjah deformacije dobimo trakasto strukturo, ki je sicer značilna za to jeklo, ni pa nujna (sl. 8). Tudi pri jeklih za poboljšanje in vzmetnih jeklih se stopnja deformacije odraža v strukturni nehomogenosti, to je v različni velikosti posameznih zrn.

Na osnovi teh preiskav lahko zaključimo, da je pri jeklih, ki so predelana do take stopnje, da so napake, ki izhajajo iz izdelave jekla, toliko zmanjšane, da ne vplivajo na lastnosti jekla, in da je lita struktura deformirana do take stopnje, da pri toplotni obdelavi nič več ne vpliva na izoblikovanje mikrostrukture, odvisna velikost avstenitnih in tudi sekundarnih zrn od temperature zadnje deformacije. Stopnja deformacije pa mora biti večja od 15 %, da dobimo rekristalizirano strukturo. Povprečne končne temperature valjanja so pri dimenziji 49 × 49 mm (stopnja redukcije 4,2:1), ki bi, kot so pokazale preiskave, že lahko prišla v poštev kot polizdelek,

Slika 6 Makrostruktura valjancev jekla Č. 4830 po sedmem in devetem vtiku

Fig. 6

Macrostructure of the rollings of Č. 4830 steel after the seventh and the ninth pass

Slika 7 Austenitna zrna na vzorcu jekla Č. 1221 po stopnji redukcije 2,4:1 (pov. 100 ×)

Austenite grains on the sample of Č. 1221 steel after the 2.4 to 1 reduction (magn. 100 ×)

Normalized microstructure of Č. 4320 steel (sample 2). Reductions were 2,4 to 1 and 9.8 to 1. Magn. 100 × .

1050 °C. Valjanci, zvaljani na končno dimenzijo, pa so imeli povprečno temperaturo 960 °C. V tem temperaturnem intervalu je rast kristalnih zrn že počasna, oz. se, kot so pokazale meritve ohlajanja vzorcev preseka 45×45 mm, valjanci hitro ohladijo na tako temperaturo, kjer je rast zrn že precej počasna. Upoštevati pa moramo, da imajo ta jekla malo aluminija. Pri cementacijskih in konstrukcijskih jeklih se uporablja kot afinator 0.01 do 0.025 % Al. Ta količina aluminija, vezanega v nitrid, zagotavlja velikost avstenitnih zrn najmanj razred 5 po ASTM klasifikaciji. Preiskana jekla imajo aluminij na spodnji meji željene vsebnosti ali pod njo.

Velikost in rast avstentnih zrn po deformaciji smo določili po metodi linearne intercepcije na vzorcih, ki smo jih po avstenitizaciji pri 1200 °C deformirali (30 %) v temperaturnem intervalu 1200 do 900 °C in nato zadržali na temperaturi deformacije. Struktura po rekristali-

Odvisnost velikosti primarnih in sekundarnih kristalnih zrn od temperature deformacije in zadržanja na deformacijski temperaturi za jeklo Č. 1221 (vzorec 1)

Fig. 9

Relationship between the size of the primary and the secondary crystal grains, and the deformation temperature and the holding time at the deformation temperature for C. 1221 steel (sample1)

Fig. 10

Relationship between the size of the primary and the secondary crystal grains, and the deformation temperature and the holding time at the deformation temperature for Č. 4320 steel (sample 3) zaciji ni stabilna, pač pa zrna rastejo. Rast avstentnih zrn v odvisnosti od časa zadržanja na temperaturi deformacije je za nekatera jekla prikazana na slikah 9 do 12. Potek krivulj je pri vseh jeklih podoben. Takoj po deformaciji so avstenitna zrna največja na vzorcih, deformiranih pri 1200°C, in se zmanjšujejo s padajočo temperaturo deformacije. Rast zrn je pri izotermnem zadržanju najintenzivnejša pri 1200°C in zrna v 90 sekundah zrastejo za 2 razreda ASTM (sl. 13), pri 1100°C pa je proces rasti že precej počasnejši. Pri 1000°C in 900°C zrna le malo zrastejo, proces pa se izvrši hitro in je po 30 sek. velikost zrn praktično nespremenjena.

Pri meritvah velikosti normaliziranih zrn nismo opazili, da bi bila ta pogojena z velikostjo avstentnih zrn, če smo vzorce deformirali nad 1000 °C (sl. 14, 15). Odsto-

Odvisnost velikosti primarnih in sekundarnih kristalnih zrn od temperature deformacije in zadržanja na deformacijski temperaturi za jeklo Č. 1531 (vzorec 6)

Fig. 11

Relationship between the size of the primary and the secondary crystal grains, and the deformation temperature and the holding time at the deformation temperature for C. 1531 steel (sample 6)

Odvisnost velikosti primarnih in sekundarnih kristalnih zrn od temperature deformacije in zadržanja na deformacijski temperaturi za jeklo Č. 2331 (vzorec 8)

Fig. 12

Relationship between the size of the primary and the secondary crystal grains, and the deformation temperature and the holding time at the deformation temperature for Č. 2331 steel (sample 8)

Slika 13

Austenitna zrna na vzorcih jekla Č. 2331 po takojšnem gašenju v vodi po deformaciji pri 1200 'C in po 60 sek. zadržanju na deformacijski temperaturi (pov. 100 ×)

Fig. 13

Austenite grains in the samples of \tilde{C} , 2331 steel after immediate quenching in water after the deformation at 1200 °C, and after 60 sec. holding on the deformation temperature. Magn. $100 \times .$

panja so v mejah merilnih napak. Do take odvisnosti pride verjetno zaradi velike predhodne deformacije, saj smo preizkuse naredili na vzorcih, ki smo jih po valjanju skovali v palice 8 × 16 mm.

Pri vzorcih, deformiranih pri 900 °C, se v strukturi pojavljajo večja perlitna zrna. Temperatura začetka rasti posameznih avstentnih zrn se znižuje s padanjem vsebnosti aluminija (14). Rast avstentnih zrn zadržujejo le drobni dispergirani izloči AlN, ki pa jih je v teh jeklih malo. Na mestih, kjer jeklo pri valjanju počasi ali pa sploh ne rekristalizira in zrna v deformiranem stanju dosežejo transformacijsko temperaturo, nastanejo večji izločki kot v področjih hitre rekristalizacije. Pri ponovnem ogrevanju jekla na takih mestih torej ni izločkov, ki bi uspešno ovirali migracijo kristalnih mej in tudi v tem primeru zrastejo kristalna zrna do večje velikosti. Iz teh razlogov tudi normalizacija ne zagotovi homogene strukture.

5. MEHANSKE LASTNOSTI JEKEL

Natezne preizkušance smo pripravili v vzdolžni smeri valjancev, ki smo jih odrezali po tretjem, petem in sedmem vtiku in iz valjanih palic. Želeli smo ugotoviti, kako različna stopnja deformacije, od katere je, kot smo ugotovili v 3 in 4 točki tega dela, odvisna homoge-

Slika 14

Normalizirana struktura vzorcev jekla Č. 2331 deformiranih pri 1200 in 900 °C. Po deformaciji so bili vzorci gašeni v vodi (pov. 100 ×)

Fig. 14

Normalized structure of \check{C} . 2331 steel samples deformed at 1200 °C and 900 °C. After the deformation the samples were quenched in water (magn. 100 \times)

nost jekla in tudi mikrostruktura, vpliva na mehanske' lastnosti jekel.

Mehanske lastnosti vzorcev jekel v normaliziranem in poboljšanem stanju so prikazane v tabelah 3 in 4. Vrednosti meje plastičnosti in natezne trdnosti se sicer med seboj malo razlikujejo. Odstopanja so večinoma v mejah normalnega raztrosa in le pri nekaterih jeklih opazimo tendenco, da imajo večje vrednosti vzorci z večjo stopnjo predelave. To je razumljivo, ker so razlike v povprečni velikosti kristalnih zrn vzorcev s stopnjo predelave 2,4:1 in 9,8:1 manjše od razreda ASTM. Natezna trdnost jekla se opazneje izboljša, če znašajo razlike v velikosti zrn več kot za razred ASTM. Pri raztezku in kontrakciji je vpliv stopnje predelave očitnejši, vendar so razlike tudi pri teh lastnostih zelo majhne.

6. ZAKLJUČEK

Pregledi Baumannovih odtisov in jedkalnih plošć litih gredic so pokazali, da imajo gredice bolj ali manj porozno sredino z radialnimi razpokami. Površinske razpoke so na brušenih gredicah redke. Porozna sredina in notranje razpoke se pri valjanju hitro zavarijo in teh napak po tretjem vtiku pri stopnji redukcije 2,4:1 nismo opazili. Jekla nimajo izrazitega likvacijskega kvadrata, močneje pa se jedka porozna sredina gredic in

Slika 15

Normalizirana mikrostruktura vzorcev jekla Č. 1531 deformiranih pri 1200 in 900 °C. po deformaciji so bili vzorci gašeni v vodi (pov. 100×)

Fig. 15

Normalized microstructure of \overline{C} . 1531 steel samples deformed at 1200 °C, and 900 °C. After the deformation the samples were quenched in water (mang. 100 ×)

mesta ob radialnih razpokah. Na teh mestih je več nekovinskih vključkov in jeklo je bogatejše z oligoelementi. Tok materiala je pri valjanju tak, da pride le redko do večje prerazporeditve materiala po preseku valjancev.

Pri valjanju se lita struktura že po tretjem vtiku močno zabriše ali pa je sploh več ne opazimo, odvisno od tega, kako izrazita je bila transkristalna cona. Pri petem vtiku, ko znaša stopnja redukcije 4,2:1, lite strukture v valjancih nismo več opazili.

Stopnja redukcije vpliva tudi na mikrostrukturne značilnosti toplotno obdelanega jekla. Če je ta manjša od 5:1, ko so tudi temperature valjanja visoke, so avstenitna zrna neenakomerno velika. Podobno nehomogeno mikrostrukturo dobimo pri normalizaciji jekel za poboljšanje in pri vzmetnih jeklih. Cementacijska jekla imajo večja zrna in specifično porazdelitev ferita in perlita. Pri večji stopnji predelave in nižji končni temperaturi valjanja, ko v jeklu ni več znakov lite strukture, imajo valjanci homogeno mikrostrukturo.

Velikost austenitnih zrn po deformaciji in rast avstenitnih zrn po rekristalizaciji je podobna kot pri jeklih, izdelanih po konvencionalnem postopku. Pozna pa se, da imajo ta jekla sorazmerno malo aluminija.

Meja plastičnosti in natezna trdnost nista odvisni od stopnje predelave jekla.

ZEZB 18 (1984) stev. 1	Vpliv stopnje predelave na	lastnosti konti jekla
------------------------	----------------------------	-----------------------

Oznaka	Jeklo	Meja plastičnosti σ _t (N/mm')	Natezna trdnost σ _m (N/mm ²)	Raztezek δ (%)	Kontrakcija ψ (%)	Temperatura normalizacijo (°C)
1/1	Č. 1221	307	461	24	41	900
1/2		297	458	24	41	
1/3		298	461	25	43	
1/4		305	465	26	44	
2/1	Č. 4320	342	488	26	39	880
2/2		344	487	24	42	
2/3		351	489	28	45	
2/4		349	480	31	44	
5/1	Č. 1531	390	683	17	27	870
5/2		404	688	19	27	
5/3		394	682	21	29	
5/4		392	689	20	27	
7/1	Č. 4830	373	770	14	23	880
7/2		386	777	15	23	
7/3		389	791	17	25	
7/4		380	784	15	24	
8/1	Č. 2331	556	962	13	21	860
8/2		559	963	12	20	
8/3		562	975	15	24	
8/4		570	972	16	24	
9/1	Č. 4230	431	926	10	8	860
9/2		424	922	10	10	
9/3		432	935	11	10	
9/4		435	940	12	11	

Tabela 3: Mehanske	lastnosti jek	cel v	normaliziranem	stanju	pri	različnih	stopnjah	redukcij	e
a serve a sec a se									

1/3, 2/3, 5/3, 7/3, 8/3, 9/3 - stopja redukcije 6,3:1

1/4, 2/4, 5/4, 7/4, 8/4, 9/4 — stopnja redukcije 9,8:1

Tabela 4: Mehanske lastnosti jekel v poboljšanem stanju pri različnih stopnjah redukcije

Oznaka	Jeklo	Meja plastičnosti σ _t (N/mm ²)	Natezna trdnost σ _m (N/mm²)	Raztezek δ (%)	Kontrakcija ψ (%)	Temperatura kaljenja (°C)	Temperatura popuščanja (°C)
1/1	Č. 1221	452	647	17	34	910	160
1/2		442	631	18	35		
1/3		457	655	19	38		
1/4		460	658	20	38		
2/1	Č. 4320	681	821	11	34	870	190
2/2		692	834	10	31	100.000	2018-0200
2/3		680	830	13	36		
2/4		690	835	13	36		
5/1	Č. 1531	510	784	14	32	860	600
5/2		511	785	13	31		
5/3		525	794	14	34		
5/4		537	789	16	35		
7/1	Č. 4830	1086	1157	9	28	860	600
7/2		1090	1161	9	29	10,753	201200
7/3		1096	1168	11	31		
7/4		1086	1156	10	31		
8/1	Č. 2331		1304	7	15	850	500
8/2			1311	7	15		
8/3		-	1310	8	18		
8/4		-	1325	8	17		
9/1	Č. 4230	-	1628	4	11	860	470
9/2			1607	5	14		
9/3			1641	5	14		
9/4			1618	4	14		

Oznake vzorcev so enake kot v tabeli 3.

Pri raztezku in kontrakciji se sicer opazi tendenca, da imajo vzorci z večjo stopnjo predelave malo večje vrednosti, vendar so razlike v mejah merilnih napak. Mehanske lastnosti ustrezajo predpisanim vrednostim.

Preiskave so pokazale, da je kvaliteta valjanih proizvodov močno odvisna od pogojev izdelave in litja jekla. Porozna sredina in radialne razpoke se pri valjanju hitro zavarijo. Pri stopnji redukcije 5:1 je lita struktura po celotnem preseku porušena in izoblikovanje mikrostrukture pri toplotni obdelavi ni več odvisno od predhodne strukture. Pri ustrezno izdelanem jeklu zagotavlja stopnja redukcije 5:1 uporabnost jekla s stališča homogenosti in mikrostrukturnih značilnosti.

- Menter J.: Continuous casting moves into quality steels, Metals and Materials, julij/august 1977
- Vodopivec F., Manojlović, F. Vizjak, O. Kürnen, D. Gnidovec: Afinacija austenitnih in feritnih zrn v kontinuirno ulitih jeklih, poročilo MI568, 1977
- Kmetič D., F. Vodopivec, F. Vizjak, F. Haler, T. Razinger, B. Ralić: Raziskava značilnosti procesa deformacije in lastnosti kvalitetnih jekel, ki se valjajo iz kontinuirno ulitih gredic, poročilo MI 609, 1977
- Marr. H. S.: Technological problems in continuous casting. Iron and Steel International, april 1978

- Hoshi F., Aoyama Y.: Continuous Casting of High Alloy Steels, Transactions, 429–444, 1978
- Smallmen R. E.: Modern physical metallurgy, Butterwarths, London 1970
- Rose A. in sodelavci: Atlas zur Wärmebehandlung der Stähle, Verlag Stahleisen, Düsseldorf 1954–58
- Weinberg F.: Continuous casting, Metals Technology, febr. 1979
- Flemings M. C.: New solidification processes and products, Metals Technology, febr. 1979
- Kmetič D., F. Vizjak, F. Haler, F. Vodopivec: Raziskava procesa vroče predelave jekla, ki se valjajo iz konti litih gredic, poročilo MI 667, 1978
- Kmetič D., F. Vizjak, F. Haler, F. Vodopivec: Vpliv stopnje predelave na lastnosti konti jekla, poročilo MI 786, 1979
- Kmetič D., F. Vodopivec: Nekatere značilnosti jekel izvaljanih iz kontinuirno ulitih gredic, Železarski zbornik, 13, 1979, št. 3, 85-93
- Kmetič D., F. Vodopivec, J. Žvokelj, B. Arzenšek: Primerjalne preiskave konvencionalnega in kontinuirno ulitega cementacijskega jekla Č. 4320, ki je legirano z Nb, Železarski zbornik 15, 1981, št. 3, 213-218
- Vodopivec F., A. Rodič, J. Rodič: raziskava vpliva temperature valjanja na mikrostrukturo krom manganovega jekla za cementacijo, Železarski zbornik, 16, 1982, št. 4, 111–122

ZUSAMMENFASSUNG

Die Untersuchungen der Baumannabdrücke und der Ätzproben der gegossenen Knüppel zeigten eine mehr oder weniger poröse und mit Radialrissen versehen Mitte. Die Oberflächenrisse sind an geschleifften Knüppeln selten zu finden. Die poröse Mitte und die inneren Risse verschweissen beim Walzen schnell und diese Fähler sind nach dem dritten Stich beim Verformungsgrad 2,4:1 nicht mehr festzustellen.

Die Stähle haben keinen ausgeprägten Seigerungsquadrat. Die poröse Mitte und die Stellen um die Radialrisse werden stärker angeätzt.

Auf diesen Stellen gibt es mehrere nichtmetallische Einschlüsse. Das Material fliesst beim Walzen so, dass nur selten zu einer grösseren Überanordnung des Materiales über den Querschnitt des Walzgutes kommt.

Beim Walzen verwischt sich das Gussgefüge stark schon nach dem dritten Stich oder lässt sich gar nicht merken, abhängig davon wie ausgeprägt die transkristalline Zone war. Nach dem fünften Stich beim Verformungsgrad 4,2:1 kann das Gussgefüge gar nicht mehr beobachtet werden.

Der Verformungsgrad beeinflusst auch die Gefügeeigenheiten des Warmbehandelten Stahles. Wenn dieser kleiner ist als 5:1, wo die Walztemperaturen noch hoch sind, sind die Austenitkörner ungleichmässig gross. Ein änhlich unhomogenes Mikrogefüge erhält man bei der Normalglühung der Vergütungsstähle und bei den Fererstählen. Einsatzstähle haben grössere Körner und eine spezifische Verteilung von Ferrit und Perlit. Beim grösseren Verformungsgrad und niedriger Endwalztemperatur, wo im Stahl keine Zeichen des Gussgefüges mehr sichtbar sind, hat das Walzgut ein homogenes Mikrogefüge.

Die Austenitkorngrösse nach der Verformung und das Wachsen der Austenitkörner nach der Rekristallisation sind ähnlich wie bei den konventionell erzeugten Stählen. Es ist aber zu erkennen, dass diese Stähle verhältnissmässig wenig Aluminium enthalten.

Die Streckgrenze und die Bruchfestigkeit sind nicht vom Verformungsgrad des Stahles abhänging. Bei der Dehnung und der Einschnürung ist zwar die Tendenz bemerkbar, dass die Proben mit grösserem Vorformungsgrad etwas grössere Werte aufweisen, jedoch sind die Unterschiede in den Grenzen der Messfehler. Die Mechanischen Eigenschaften entsprechen den vorgeschriben Werten.

Die Untersuchungen zeigten, dass die Qualität der Walzerzeugnisse stark von den Bedingungen der Stahlherstellung und des Giessens ist. Poröse Mitte und die radialen Risse verschweissen beim Walzen schnell. Beim Verformungsgrad von 5:1 ist das Gussgefüge über den ganzen Querschnitt zerstört und die Ausbildung vom Mikrogefüge bei der Wärmebehandlung ist nicht mehr von dem vorhergehenden-Gefüge abhängig. Beim entsprechend hergestellten Stahl versichert der Verformungdgrad 5:1 die Anwendbarkeit des Stahles vom Standpunkt der Homogenität wie vom Standpunkt der Gefügeeigenheiten.

Literatura

ŽEZB 18 (1984) štev. 1 Vpliv stopnje predelave na lastnosti konti jekla

SUMMARY

Sulphur printing and the etched macrospecimens of cast billets show their more or less porous centre with radial cracks. Surface cracks on ground billets are rare. The porous centre and the internal cracks are quickly welded during rolling, and after the thirds pass at the 2.4 to 1 reduction were not observed anymore. The steel does not show the pronounced liquation square. More intensive etching was observed in the porous centre of billets and along the radial cracks. These areas are richer in non-metallic inclusions. The material flow in rolling is such that very seldom a greater rearrangement of material occurs on the cross section of the rollings.

In rolling the cast structure is highly reduced already after the third pass, or it even disappears, depending how pronounced was the zone of columnar crystals. After the fifth pass at the 4.2 to 1 reduction the cast structure in the rollings disappeared in all the casses.

The degree of reduction influences also the microstructured characteristics of the heat-treated steel. Below 5 do 1, and also at high rolling temperatures, the austenite grains are not uniformly big. Similar nonhomogeneous microstructure is obtained in tempering and spring steel. Case-hardening steel have greater grains and specific distribution of ferrite and pearlite. At higher degree of working and lower final temperature when steel does not contain any retained cast structure, the rollings contain homogeneous microstructure.

The size of austenite grains after the deformation, and the growth of austenite grains after the recrystallisation is similar to that in steel manufactured by a standard way. It is visible that these steels contain relatively less aluminium.

Yield point and tensile strength do not depend on the degree of working.

In elongation and contraction, the tendency is observed that more deformed samples had higher values but the differences are in the limits of measuring errors. The mechanical properties correspond to the prescribed values.

The investigations showed the quality of rolled products highly depends on the manufacturing and casting conditions. Porous centre and radial cracks are in the rolling fast welded. In the 5 do 1 reduction the cast structure disappears over the whole cross section, and the formation of microstructure in heat treatment does not depend any more on the original structure. In well manifactured steel the 5 to 1 reduction enables the applicability of steel from the view point of homogeneity and microstructural characteristics.

ЗАКЛЮЧЕНИЕ

Осмотр баймановских отпечатков и травленных образцов отлитых заготовок показал, что заготовки имеют более или менее выраженную пористую среднию часть с радиальными трещинами. На шлифованных заготовках поверхностные трещины сравнительно редкие. Пористая средняя часть и внутренные трещины при прокатки быстро свариваются, эти трещины после третьего обжатия на пропуск степени 2,4:1 не обнаружены. Стали не имеют форму ликвашионого квадрата, но более заметно происходит травление пористой середины заготовок и пределов около радиальных трещин. В этих пределах больше неметаллических включений, и сталь более богата на содержание олигоэлементов. Технологический процесс при прокатки вполне уравнен, так что редко получается более крупное отступление, что касается сечения проката.

В течении прокатки литая структура уже при третьем пропуске существенно изглаживается или же совсем исчезает, что зависит от выразительности транскристаллической зоны. При пятом обжатии на пропуск степени 4,2:1 литая структура на поверхности проката больше совсем не обнаруживается.

Степень обжатия оказывает влияние также на микроструктурные особенности стали при горячей обработки. Если это обжатие меньше от 5:1, то при высоких температурах прокатки аустенитные зерна неравномерной величины. Подобную негомогенную микроструктуру получается при сталях для улучшения и пружинных сталях. Цементуемые же стали имеют более крупные зерна и удельное распределение феррита и перлита. При дальнейшей степени переработки и более низкой конечной температуры прокатки знаки литой структуры встали не обнаружены, прокат имеет гомогенную микроструктуру.

Величина аустенитных зерен после деформации и увеличение этих зерен после рекристаллизации подобны сталям, изготовленные традиционным способом. Замечено же, что ети стали имеют сравнительно низкое содержание алюминия.

Кажуйся предел текучести и прочност не зависят от степени переработки стали.

Хотя при растяжении и сужении обнаружено стремление образцов, полученных при большой степени переработки более выраженные значения, но всё-таки разница иаходиться в пределах измерительных погрешностей.

Исследования показали, что качество проката зависит от условий изготовления и отливки стали. Пористая средняя часть и радиальные трещины быстро завариваются.

При степени обжатия 5:1 литая структура по всем сечениям разрушена и формирование микроструктуры при термической обработки уже не зависит от предедущей структуры.

При соответствующе изготовленной стали обеспечивает обжатие на пропуск степени 5:1 применимость стали не только с точки зрения гомогенности, но также что касается и микроструктурных особенностей.

Vpliv toplotne obdelave na žilavost bainita Cr-W-V jekel

UDK: 620.178.746.22:621.785.4 ASM/SLA: J 26 p, Q 6 n, N 8 g, N 8 m

Franc Uranc

Ugodnosti kaljenja v bainit so že dolgo znane, ni pa veliko podatkov o vplivu legirnih elementov na pogoje nastajanja najbolj žilavega bainita. Te pogoje smo preiskovali pri Cr-W-V jeklih.

1. SPLOŠNO O NASTAJANJU IN LASTNOSTIH BAINITA

Jeklene izdelke, ki morajo biti obenem trdi in žilavi, moramo izdelati po kateri od posebnih tehnologij izdelave, predelave ali toplotne obdelave. Od toplotnih obdelav pride najbolj v poštev izotermno kaljenje v bainit.

Ta način kaljenja si bomo podrobno ogledali.

Glede na način tvorbe strukture razlikujemo izotermno nastali bainit od zvezno nastalega, ki nastaja med zveznim ohlajanjem. Glede na temperaturo nastajanja in glede na lastnosti pa razlikujemo zgornji bainit od spodnjega. Prvi je veliko manj žilav in manj trd kot drugi.¹

Vzrok različnim lastnostim je v različnem nastajanju: Zgornji bainit nastaja iz avstenita tako, da se paralelno izločajo plasti Fe₃C in ferita. Takoj po nastanku se struktura popusti. Lamele Fe₃C so debele 0,1 μ m in dolge 0,3 μ m, lamele ferita so dolge do 1,7 μ m. Feritne meje so delno nekoherentne, orientacijski odnos med feritom in Fe₃C je delno podoben kot v popuščenem martenzitu. Število malokotnih mej med feritnimi zrni in gostota dislokacij sta manjša kot v tršem spodnjem bainitu (sl.1).

Slika I

Struktura zgornjega bainita jekla z 0,1 % C. Premena pri 600 °C. 75000 × . Mikrograf s tenko folijo¹.

Fig. 1

Structure of upper bainite in steel with 0.1 % C. Transformation at 600 'C. Micrograph with thin foil'. 75,000 ×. V visokolegiranih in visokoogljičnih jeklih zgornji bainit ne nastopi.

Spodnji bainit nastaja pri določeni temperaturi tako, da se iz avstenita tvori ferit, v katerem se nato izločajo karbidne paličke pod kotom 60° glede na os feritne igle². Feritne meje so koherentne, orientacijski odnos med feritom in Fe₃C je večinoma podoben kot pri popuščenem martenzitu:

Fe ₃ C		Ferit
(001)	11	(211)
[100]	11	[011]
[010]	11	[0II]

Strukturo spodnjega bainita jekla z 0,4 % C po premeni pri 350° C kaže slika 2.

Slika 2 Struktura spodnjega bainita jekla z 0,4 % C po premeni pri 350 °C. 45000 ×. Mikrograf s tenko folijo¹.

Fig. 2

Structure of lower bainite in steel with 0.4 % C after transformation at 350 °C. Micrograph with thin foil¹. 45,000 × .

Habitusna ravnina ferita (122) ustreza ravnini (245) avstenita. Bainit je martenzitu podoben po orientacijskih značilnostih in po temperaturi nastajanja pod rekristalizacijsko temperaturo, perlitu pa po tem, da ni tetragonalen in po tem, da se tvorijo legirani karbidi šele po tvorbi bainita³.

Obema vrstama bainita je skupna enaka energija za tvorbo kali. Avstenit se lahko popolno spremeni v bainit le pri določeni primerni temperaturi, t. j., izotermno. Drugače je med zveznim ohlajanjem, npr. po litju, valjanju, varjenju, toplotni obdelavi, ko je premena v bainit nepopolna — jeklo vsebuje po ohladitvi še druge strukturne sestavine. Ce je vsebnost ogljika nad 0,6 %, se izločajo karbidi že iz avstenita. Vsebnost ogljika določa mejo med zgornjim in spodnjim bainitom. Hitrost ohlajanja močno vpliva na lastnosti zvezno ohlajene strukture.

Na lego bainitnega območja v TTT diagramu vplivajo legirni elementi. Spreminjanje vsebnosti ogljika le nebistveno vpliva na čas premene avstenita v bainit v jeklu, ki ne vsebuje znatnih deležev drugih legirnih elementov. Dodatek do 2 % W malo podaljša premenski čas. Dodajanje kroma do 3 % tudi odmika krivuljo bainitne premene na desno, vendar je vpliv volframa močnejši. Dodajanje volframa bolj odmika krivuljo perlitnega kot bainitnega začetka, kar lahko pričakujemo⁴.

2. PREIZKUSI

2.1. Primerjava TTT diagramov Cr-W-V jekel

Preizkuse za ugotavljanje lastnosti bainita Cr-W-V jekel smo omejili na jekla Č. 4830 – VCV 150, Č. 6444 – Osikro 4, Č. 4146 – OCR 4 ex. sp., Č. 4150 – OCR 12, Č. 4650 – OCR 12 special.

Razpredelnica 1 kaže smerne sestave teh jekel.

Razpredelnica	1:Smerna	kemijska	sestava
	preizkuš	enih jekel	

151410		Kemijska	sestava *	%
JERLO	С	Cr	W	V
ć.4830-VCV150	0,5	1	-	Q15
Č 6444 - Osikro 4	Q,6	1	2	Q,2
č.4146-00R4exsp	1	<i>ξ</i> 5	-	1
Č. 4150-0CR 12	2	12	-	-
Č.4650 ОСR12sp	2	12	<i>q6</i>	Q15

Jekli, podobni prvima dvema, so že izotermno kalili v bainitnem območju^{5.6}, druga tri jekla pa so v bainitnem stanju manj preiskana.

Za določanje vpliva legirnih elementov in pogojev toplotne obdelave na lastnosti bainita smo preiskali precej več jekel, kot smo jih preizkusili. Določenih jekel legirnega tipa Cr-W-V nismo preizkušali, ker so prejšnje preiskave pokazale bodisi težavnost bodisi nekoristnost obdelave v bainit:

 Ogljično jeklo z 0,8 C se zelo dobro obnaša po izotermni premeni v bainit, toda kaljenje terja posebno kopel z veliko hladilno zmožnostjo.

 Utopno jeklo z volframom so tudi kalili v bainit, toda bainit ni pri temperaturi uporabe utopov nič bolj žilav kot enako trd martenzit.

 Hitrorezno jeklo, legirano s kromom, volframom in vanadijem, so že poskušali kaliti v bainit, toda zadelj potrebe po dolgem zadrževanju pri temperaturi premene je takšno kaljenje negospodarno.

Koliko je katero jeklo primerno za premeno v bainit, je možno videti s TTT diagrama. Glavna spremenljivka, ki nas zanima, je čas. Jeklo moremo izotermno kaliti v bainit, če je začetek premene zadosti dolgo po začetku ohlajanja z avstenitizacijske temperature. Krivulja TTT naj bo odmaknjena od začetka diagrama vsaj za nekaj sekund. Premena naj ne traja predolgo, zavoljo gospodarnosti.

Od jekel, ki smo jih vzeli v preiskavo, imajo le prva tri takšne TTT diagrame, ki obljubljajo ugodnosti izotermnega kaljenja v bainit. Izotermni TTT diagrami za ta tri jekla so si precej podobni, zato je zadosti, če si ogledamo le enega (sl. 3).

Isothermal TTT diagram of C. 4830 - VCV 150 steel7

Izotermni TTT diagram jekla Č. 6444 — Osikro 4 kaže najhitrejšo premeno avstenita v bainit pri nižji temperaturi (t. j. pri okoli 350 °C) kot TTT diagram jekla Č. 4830 — VCV 150. Druga razlika med jekloma je v tem, da povišanje avstenitizacijske temperature loči v TTT diagramu jekla Č. 6444 — Osikro 4 perlitno območje od bainitnega, medtem ko se območji v TTT diagramu jekla Č. 4830 — VCV 150 ne ločita. Vzrok tema razlikama je navzočnost volframa v drugem jeklu.

Sl. 4: TTT diagram jekla Č. 4150 – OCR 12 je povsem drugačen. Bainitno območje je zelo močno odmaknjeno na desno. Popolne premene v bainit pri tem jeklu ne moremo pričakovati v nekaj urah. Poskuse smo opravili s tem jeklom zato, ker smo želeli zvedeti, ali more že majhen delež bainita znatno zboljšati žilavost orodjem iz visokokromovega jekla.

Med ohlajanjem jekla z livarske, kovaške ali kalilne temperature potekajo strukturne premene, ki jih prikazujejo kontinuirni diagrami TTT, t. j. diagrami premen med zveznim ohlajanjem. Za jeklo Č. 4830 – VCV 150 je prikazan tak diagram na sliki 5.

Najbolj izrazita razlika med diagramoma jekel Č. 4830 – VCV 150 in Č. 6444 – Osikro 4 je v časovnem območju nastopanja bainita. V jeklu Č. 4830 – VCV 150 se pojavlja bainit po hitrem ohlajanju (1– 15°C/s) z avstenizacijske temperature, v jeklu Č. 6444 – Osikro 4 pa po počasnejšem (0,2–5°C/s). V jeklu Č. 4146 – OCR 4 ex. sp. se pojavlja bainit

V jeklu Č. 4146 – OCŘ 4 ex. sp. se pojavlja bainit po zelo hitrem ohlajanju $(3-20^{\circ}C/s)$.

V jeklu Č. 4150 - OCR 12 se pojavi bainit šele med zelo počasnim ohlajanjem (0,2-0,5 °C/s) z avstenitizacijske temperature.

Izotermni TTT diagram jekla Č. 4150 — OCR 12. Fig. 4

Isothermal TTT Diagram of Č. 4150 - OCR 12 steel

Diagram zveznega ohlajanja jekla Č. 4830 — VCV 150. Fig. 5

Diagram of continuous cooling Č. 4830 - VCV 150 steel

Poleg TTT diagramov jekel, ki smo se jih namenili preizkusiti, smo si ogledali še izotermne TTT diagrame drugih Cr-W-V jekel. Ugotovili smo, da se z zviševanjem vsebnosti ogljika ali z zmanjševanjem vsebnosti kroma in volframa znižuje najvišja temperatura, pri kateri že začne izotermno nastajati bainit. Zviševanje vsebnosti ogljika in volframa ter zmanjševanje vsebnosti kroma znižujeta temperaturo najhitrejše premene avstenita v bainit.

Povečanje vsebnosti teh elementov nekoliko podaljšuje čas do začetka tvorbe bainita, dodajanje vanadija pa ta čas močno podaljšuje.

Povečevanje vsebnosti kroma in volframa močno podaljša čas do popolne premene avstenita v bainit.

2.2. Vpliv temperature in časa za premeno na žilavost in trdoto bainita, ki nastaja izotermno

Ker moremo ustvariti čisto bainitno strukturo določene vrste le z izotermno premeno avstenita v bainit, smo začeli ugotavljati vpliv toplotne obdelave na lastnosti bainita ravno s poskusi izotermnega kaljenja.

Žilavost in trdoto jekla Č. 4830 – VČV 150 v odvisnosti od pogojev izotermnega zadrževanja kaže slika 6.

C. 4830-VCV 150 (0,5 % C, 1 % Cr, 0,15 % V) Avstenitizirano 850°/30 minut Tri paralelke

Slika 6

Odvisnost žilavosti in trdote jekla Č. 4830 – VCV 150 od temperature premene avstenita v bainit in od časa zadrževanja jekla pri tej temperaturi.

Fig. 6

Relationship between the toughness and the hardness of Č. 4830 — VCV 150 steel, and the transformation temperature of austenite into bainite and the holding time of steel at this temperature Preizkušance smo avstenitizirali pri 850°C/30 minut, nakar smo jih prestavili v solno kopel z določeno stalno temperaturo, pri kateri smo vsako trojko preizkušancev zadrževali določen čas. Ordinata diagrama na sliki 6 kaže žilavost in trdoto preizkušancev, ki so bili določen čas na temperaturi premene. Abscisa kaže čas zadrževanja pri temperaturi premene avstenita v bainit. V zgornjem desnem kotu vsakega diagrama je zapisana temperatura premene.

Trdota preizkušancev, zadrževanih pri temperaturi premene različno dolgo, se ne spreminja bistveno. Povsem drugače je z žilavostjo, ki pokaže po določenem času zadrževanja pri temperaturi nastajanja bainita maksimum. Kakor je videti, nastopa ta maksimum povsem razločno pri preizkušancih, zadrževanih pri temperaturi premene 340 ali 350 °C. Najbolj žilavi so preizkušanci, ki so bili zadrževani pri teh temperaturah 10, oz. 15 minut. Čas, potreben za popolno premeno avstenita v bainit, je pri teh temperaturah 5 minut.

Slika 7 kaže žilavost in trdoto jekla Č. 6444 — Osikro 4 po izotermni premeni avstenita v bainit. Te žilavostne krivulje kažejo maksimume za čas zadrževanja 12—15 minut (temperatura premene od 260 do 340 °C). Trdota je skoraj neodvisna od časa zadrževanja preizkušanca pri temperaturi premene avstenita v bainit. Preizkušanci, ki so bili 5 minut pri temperaturi 260 °C,

Odvisnost žilavosti in trdote jekla Č. 6444 — Osikro 4 od temperature premene avstenita v bainit in od časa zadrževanja pri tej temperaturi.

Fig. 7

Relationship between the toughness and the hardness of the Č. 6444 — Osikro 4 steel, and the transformation temperature of austenite into bainite and the holding time of steel at this temperature pokažejo trdoto 56-57 HRC; preizkušanci, ki so bili 15 minut pri tej temperaturi premene avstenita v bainit, imajo trdoto 57-57,5 HRC.

Enako trdoto imajo preizkušanci, ki so pri temperaturi premene 300 °C bodisi 15 bodisi 60 minut. Podobno je s preizkušanci, ki so bili zadrževani pri 340 °C: po 30 minutah zadrževanja je trdota 47,5—48 HRC, po 60 minutah pa 48 HRC.

Žilavost jekla Č. 4146 – OCR 4 ex. sp. po izotermni premeni avstenita v bainit je prikazana na sliki 8. Preiz-

Fig. 8

Relationship between the toughness and the hardness of the Č. 4146 — OCR 4 ex. sp. steel, and the transformation temperature of austenite into bainite and the holding time of steel at this temperature

Odvisnost žilavosti in trdote jekla Č. 4150 – OCR 12 od pogojev izotermne premene avstenita v bainit.

Fig. 9

Relationship between the toughness and the hardness of the Č. 4150 — OCR 12 steel, and the conditions of the isothermal tansformation of austenite into bainite kušancev nismo pustili pri temperaturi premene zadosti dolgo, da bi dobili 100 %-no bainitno strukturo, saj nam ne koristi jeklo s premajhno trdoto. Ob trdoti 60 HRC je največja dosegljiva žilavost okoli 5 J (zareza DVM), kar je celo manj, kot je žilavost prizkušancev, ki so kaljeni v olju in popuščeni pri 200 °C.

Diagrama žilavosti in trdot jekel Č. 4150 – OCR 12 in Č. 4650 – OCR 12 sp. (sl. 9 in sl. 10) sta si podobna. Največjo žilavost pokažejo preizkušanci, ki so bili zadrževani pri pretvorbeni temperaturi 300 °C. Hkrati pa ti preizkušanci pokažejo tudi najmanjšo trdoto. Preizkušanec z najmanjšo trdoto je enako trd kot preizkušanec, ki je bil kaljen v olju in nato popuščen pri 200 °C, vendar je bolj žilav od tega, v martenzit kaljenega, preizkušanca. Kakor kaže trdota, bi bilo daljše kot 60-minutno zadrževanje pri temperaturi premene avstenita v bainit nezaželeno zavoljo premajhne dosegljive trdote.

X --- kaljen 960°/ alje +pop. 200°; 8 J , 61 HRC

Odvisnost žilavosti in trdote jekla Č. 4650 – OCR 12 sp. od pogojev izotermne premene avstenita v bainit.

Fig. 10

Relationship between the toughness and the hardness of the Č. 4650 — OCR 12 sp. steel, and the conditions of the isothermal transformation of austenite into bainite

2.3. Posebni poskusi ob izotermnem kaljenju

Preizkušanci prvih dveh jekel lahko pri ugodnih pogojih premene preidejo v povsem bainitno strukturo. Za jeklo, podobno jeklu Č. 6444 — Osikro 4, so ugotovili³, da je po izotermni premeni v bainit bolj žilavo, če je bilo avstenizirano pri 1000 °C namesto pri 900 °C.

Žilavost preizkušancev jekel Č. 6444 — Osikro 4 in Č. 4830 — VCV 150, ki smo jih avstenitizirali pri 1000°C in jih izotermno kalili pri 350°C, ni bila večja od žilavosti preizkušancev, ki so bili avstenitizirani pri 900°C (oz. 850°C drugo jeklo) ter nato zadržani pri 350 °C enako dolgo kot preizkušanci, ki so bili avstenizirani pri 1000 °C.

Nekaj preizkušancev smo po izotermni premeni ohladili v vodi.

Nekaj preizkušancev od vsake vrste smo po ohladitvi na sobno temperaturo oz. temperaturo vode popuščali pri 200 °C.

Ti poskusi niso zboljšali žilavosti preizkušancev, ki so bili kaljeni v bainit, temveč so žilavost kvečjemu poslabšali.

2.4. Vpliv legiranja z volframom na žilavost zvezno ohlajanih preizkušancev

Po zveznem ohlajanju z avstenitizacijske temperature nastopa v jeklih Č. 4830 — VCV 150 in Č. 6444 — Osikro 4 poleg ferita ali martenzita še bainit.

Razpredelnica 2 kaže za ti jekli strukturo, žilavost in trdoto po ohlajanju z največjo ali najmanjšo hitrostjo, ki še omogoča premeno avstenita v bainit.

Razpredelnica 2:

Vpliv hitrosti ohlajanja s temperature 880°C (prvo jeklo) ali 900°C (drugo jeklo) na strukturo, žilavost in trdoto jekel sestav 0,5 % C, 1 % Cr, 0,15 % V ali 0,6 % C, 1 % Cr, 2 % W, 0,2 % V.

Ken C	nijska % Cr	w se	stava V	Hitrost (°C/s	ohlajanja v777diag	Struktura	Žilavost J(DVM)	Trdota HRC
Q5 1		0.15	Q5 - 1,5	EP -	F+B	16	33	
	'		U,IS	10	ter.	в•м	55	26
0,61.		-	0.02	Q3-1	n ej	B + M	38	37
	2	2 0,2	1-3	1	B + M	14	59	

Prvo jeklo (Č. 4830 – VCV 150) sestave 0,5 % C, 1 % Cr in 0,15 % V je bilo po ohlajanju s hitrostjo 10 °C/s, ko ni nastopal ferit, veliko bolj žilavo in ni bilo znatno manj trdo kot po počasnejšem ohlajanju.

Drugo jeklo (Č. 6444 — Osikro 4) je bilo po počasnem ohlajanju $(0,3-1^{\circ}C/s)$ veliko bolj žilavo in trše kot prvo jeklo po podobnem ohlajanju. Drugo jeklo je po hitrejšem ohlajanju $(1-3^{\circ}C/s)$ sicer razmeroma krhko, toda je za 3 enote HRC trše kot enako žilav popuščeni martenzit brez bainita. Enako trd (59 HRC) martenzit po kaljenju v olju pokaže žilavost komaj 7 J (DVM).

Različnost žilavosti struktur, ki nastanejo med različno hitrim ohlajanjem, lahko razložimo s pomočjo dilatometrskih krivulj.

Na sliki 11 sta narisani dilatometrski krivulji za ti jekli, ohlajani z avstenitizacijske temperature z enako hitrostjo (1,16°C/s). Črtkana krivulja prikazuje dimenzijske spremembe prvega jekla. Zanimiva je ukrivljenost ohlajevalnih krivulj pod temperaturo, pri kateri se začne tvoriti bainit. Zaokrožitev krivulje jekla Č. 4830 — VCV 150 je veliko ostrejša kot zaokrožitev krivulje drugega jekla. Iz ukrivljenosti krivulj lahko sklepamo, da je pri tej ohlajevalni hitrosti veliko hitrejša tvorba bainita v prvem kot v drugem jeklu.

Slika 10

Slika 11

Relativne dimenzijske premembe jekel z 0,5 % C, 1 % Cr, 0,15 % V in 0,6 % C, 2 % W, 1 % Cr, 0,2 % V med ohlajanjem z avstenitizacijske temperature.

Fig. 11

Relative dimensional changes in steel with 0.5 % C, 1 % Cr, 0.15 % V, and with 0.6 % C, 2 % W, 1 % Cr, 0.2 % V during cooling from the austenitising temperature

Ko avsteniziramo prvo jeklo in ga ohlajamo s hitrostjo 1,16 C/s, se začne pod temperaturo 500 °C zelo hitro tvoriti bainit – krhki zgornji bainit.

Ko po avstenitizaciji ohlajamo z enako hitrostjo drugo jeklo (Č. 6444 – Osikro 4), nastaja bainit zelo zložno – krivulja le počasi spreminja smer proti povečanju dolžine. Zgornji bainit nastaja počasi.

Iz tega lahko sklepamo, da nastaja v jeklu Č. 4830 – VCV 150 sorazmerno več zgornjega bainita kot v enako hitro ohlajenem jeklu Č. 6444 – Osikro 4. V drugem jeklu je torej po takem ohlajanju z avstenitizacijske temperature veliko večji delež spodnjega bainita v skupni količini bainita, kot pa znaša ta delež v prvem jeklu.

Tako lahko razložimo, zakaj je drugo jeklo bolj žilavo od prvega, ki je ohlajano s podobno hitrostjo okoli 1°C/s.

Podobna razlaga velja za veliko žilavost prvega jekla (Č. 4830 – VCV 150) po ohlajanju s hitrostjo 10°C/s. Taka sprememba v stopnji nastajanja zgornjega bainita je naravna posledica logaritemske zakonitosti nastajanja nove strukture.

Podoben učinek kot povečanje hitrosti ohlajanja pri prvem jeklu ima na žilavost jekla dodatek 2 % volframa, ki odmakne bainitno območje v TTT diagramu na desno.

Trdota 59 HRC in žilavost 14 J (DVM) sta dosegljivi pri jeklu Č. 6444 — Osikro 4 le z žilavostnimi preizkušanci. Le-ti se na zraku ohlajajo s takšno hitrostjo, da teče ohlajevalna krivulja skozi skrajni levi del bainitnega območja v TTT diagramu zveznega ohlajanja.

3. PRIMERJAVA ŽILAVOSTI BAINITA IN MARTENZITA

Koliko koristi prinaša kaljenje v bainit, nam more povedati primerjava lastnosti bainita in martenzita. Najbolj nas zanimata trdota in žilavost preizkušanih jekel.

Slika 12 prikazuje odnos med žilavostjo in trdoto zgornjega in spodnjega bainita in martenzita jekla Č. 4830 – VCV 150. Zgornji dve krivulji kažeta žilavost spodnjega bainita določenih trdot. Pod njima je krivulja žilavosti popuščenega martenzita in pod to sta v levem spodnjem kotu diagrama žilavosti in trdote zgornjega bainita.

Ob točkah krivulj žilavosti bainita so napisane temperature nastajanja bainita, ob točkah krivulje žilavosti martenzita so napisane temperature popuščanja martenzita.

Preizkušanci z žilavostjo 30 J (DVM) imajo trdote 43 HRC (spodnji bainit), 39–42 HRC (martenzit), 35 HRC (zgornji bainit).

Iz lege krivulj je očitna prednost spodnjega bainita pred martenzitom in zgornjim bainitom. Žilavost spodnjega bainita, ki je nastal v 15 minutah, je večja od žilavosti bainita, ki je bil pri pretvorbeni temperaturi eno uro. Bainit, ki je nastajal pri temperaturi M_s točke (280 °C), je manj žilav kot bainit, ki nastane pri višji ali nižji temperaturi.

Slika 12

Vpliv temperature tvorbe abainita ali temperature popuščanja martenzita na trdoto in žilavost jekla Č. 4830 — VCV 150. Avstenitizacija: 850 °C/30 minut.

Fig. 12

Influence of the formation temperature of bainite or tempering temperature of martensite on the hardness and the toughness of the Č. 4830 - VCV 150 steel. Austenitising: 850 °C/30 minutes

Na sliki 13 je prikazan odnos žilavosti in trdote obeh bainitov in martenzita jekla Č. 6444 — Osikro 4. Tudi pri tem jeklu je spodnji bainit veliko bolj žilav kot enako trd martenzit ali zgornji bainit. Izjema je spodnji bainit, ki je nastal v preizkušancih, ki so bili eno uro pri pretvorbeni temperaturi. Od preizkušancev, ki so bili 15 minut pri temperaturi premene, so pokazali tisti, ki so bili pri 300 °C, manjšo žilavost kot tisti, katerih bainit je nastal pri 280 ali 340 °C.

Preizkušanci z žilavostjo 20 J kažejo trdoto 57 HRC (spodnji bainit), 51 HRC (martenzit), 42 HRC (zgornji bainit).

Slika 14 omogoča primerjavo trdot in žilavosti martenzitne in delno bainitne strukture jekla Č. 4150 – OCR 12. Temperature, zapisane ob točkah krivulj, so

Vpliv temperature tvorbe bainita ali popuščanja martenzita na trdoto in žilavost jekla Č. 6444 — Osikro 4. Avstenitizacija: 880°C 30 minut.

Fig. 13

Influence of the formation temperature of bainite or tempering temperature of martensite on the hardness and the toughness of the Č. 6444 — Osikro 4 steel. Austenitising: 880 °C/30 minutes.

Vpliv temperature tvorbe bainita ali popuščanja martenzita na trdoto in žilavost jekla Č. 4150 – OCR 12. Avstenitizacija: 1000 °C 30 minut.

Fig. 14

Influence of the formation temperature of bainite or tempering temperature of martensite on the hardness and the toughness of the Č. 4150 — OCR 12 steel. Austenitising: 1000 °C/30 minutes.

popuščne temperature martenzita ali temperature nastajanja bainita. Preizkušanci trdot pod 63 HRC so bolj žilavi, če je struktura martenzitnobainitna kot martenzitna. Preizkušanci s trdoto 61 HRC imajo žilavost 15 J (delno spodnji bainit) ali 12 J (martenzit).

4. SKLEPI

Iz TTT diagramov vidimo, da povečevanje vsebnosti ogljika znižuje najvišjo temperaturo nastajanja bainita, povečevanje odstotka kroma in volframa pa to temperaturo povišuje.

Temperaturo najhitrejše premene avstenita v bainit poviševanje vsebnosti ogljika in volframa znižuje, poviševanje vsebnosti kroma pa jo zvišuje. Čas do začetka premene avstenita v bainit ti elementi malo podaljšujejo, konec premene znatno podaljšata le krom in volfram.

Vanadij podaljša predvsem čas do začetka nastajanja bainita, zato je v jeklih za premeno v bainit prav primeren.

Vpliv pogojev izotermnega nastajanja bainita na njegovo žilavost je najlažje razkrivati pri jeklih Č. 4830 – VCV 150 (0,5 % C, 1 % Cr, 0,15 % V) in Č. 6444 – Osikro 4 (0,6 % C, 1 % Cr, 2 % W, 0,2 % V). Najugodnejši temperaturni območji nastajanja bainita sta 340 do 360 °C (Č. 4830 – VCV 150) in 260–340 °C (Č. 6444 – Osikro 4).

Meja nastajanja zgornjega in spodnjega bainita je pri približno 370°C.

Spodnji bainit je za 100 % bolj žilav kot enako trd martenzit in za 100–300 % oz. 50 % (pri jeklu Č. 6444 – Osikro 4) bolj žilav kot zgornji bainit. Enako žilava zgornji in spodnji bainit se razlikujeta za 5–19 enot HRC.

Največjo žilavost doseže bainit, če je jeklo le toliko časa na temperaturi nastajanja bainita, da je možna popolna premena. Izjema je temperatura tik pod prehodom zgornjega v spodnji bainit: pri tej je treba zadrževati jeklo 300 sekund dlje, kot kaže krivulja konca premene.

Najmanjšo žilavost kaže spodnji bainit, nastal blizu M_s temperature.

Volfram ne vpliva na žilavost bainita: enako trda bainita jekel Č. 4830 – VCV 150 in Č. 6444 – Osikro 4 sta enako žilava, čeprav je martenzit volframovega jekla (Č. 6444) bolj žilav kot martenzit jekla brez volframa (Č. 4830 – VCV 150).

Ležajnemu jeklu (Č. 4146 – OCR 4 ex. sp.), ki vsebuje 1 % C in 1,5 % Cr, ne moremo bistveno zboljšati žilavosti s kaljenjem v bainit, ne da bi mu padla trdota pod dopustnih 61 HRC.

Jekli Č. 4150 – OCR 12 (2 % C, 12 % Cr) in OCR 12 sp. (Č. 4650) sta v delno bainitnem stanju (čas pri temperaturi premene eno uro) za 20 % bolj žilavi kot v martenzitnem.

Z zveznim ohlajanjem jekla skozi skrajni levi del bainitnega območja TTT diagrama (zveznega ohlajanja) se pojavi bainit, ki je pretežno spodnji bainit in zato precej zboljša žilavost jekla sestave 0,6 % C, 1 % Cr, 2 % W in 0,2 % V.

Viri

- Pickering F. B.: The Structure and Properties of Bainite in Steels. Transformation and Hardenability in Steels. Symposium 1967, Climax Molybdenum Company of Michigan, Amax, str. 109-129.
- 2 Bolšakov V. N., L. I. Kotorova, I. A. Mongait: Vibor optimalnogo strukturnogo sostojanija konstrukcionnih stroitelnih stalej beinitnogo klassa, Metallovedenie i termičeskaja obrabotka metallov, 1976, No 2, str. 28-30.
- 3 Eckstein H-J: Wärmebehandlung von Stahl, Leipzig 1971, str. 200-214.

- 4 Thelning K-E: Steel and its Heat Treatment, Bofors Handbook, Butterworths, London and Boston, 1975, str. 95-103.
- 5 Birjukova V. N.: Izotermičeskaja zakalka instrumentalnih stalej, MITOM, 1965, No 9, str. 53-57.
- 6 Hengerer F.: Zwischenstuffenumwandlung von Walzlagerstählen. Draht – Zeitschrift, 1976, No 3, str. 108–109.
- Wever F., A. Rose, W. Peter, W. Strassburg, L. Rademacher: Atlas zur Wärmebehandlung der Stähle. Herausg. Max – Planck Institut für Eisenforschung, Wekstoffausschuss des Vereins Deutscher Eisenhüttenleute, 1954/56/58, Verlag
 Stahleisen MBH, Düsseldorf, 1972.

ZUSAMMENFASSUNG

Die Zähigkeit der niedriglegierten Cr-W-V Stähle wird durch das isothermische Härten in Bainit dem Martensit entgegen um 50 bis 300 % verbessert. Die gleich zähen, der obere und der untere Bainit unterscheiden sich in der Härte um 5 bis 19 HRC Einheiten.

Die Haltedauer der Proben auf der Umwandlungstemperatur soll gleich der Zeit der vollkommenen Umwandlung in Bainit sein. Die Zeit, die nötig ist für das Erreichen der grössten Zähigkeit in der Nähe der Bildung von oberem Bainit soll länger sein von der Zeit für die vollkommene Umwandlung von austenit in Bainit. Der in der Nähe der Ms Temperatur bildende Bainit ist weniger zähe als der bei etwas höherer oder niedriger Temperatur bildende Bainit. Das Legieren mit Wolfram hat keinen Einfluss auf die Zähigkeit von Bainit.

Den Stählen mit 2 % C und 12 % Cr kann durch Teilweise Umwandlung in Bainit die Zähigkeit um 20 % gegenüber Martensitzustand verbessert werden.

Durch die kontinuirliche Abkühlung von Stahl durch den äusserst linken Teil des Bainitbereiches im TTT Diagram bildet sich Bainit der die Zähigkeit erheblich verbessert.

SUMMARY

In low alloyed Cr-W-V steel, the isothermal hardening into bainite increases the toughness for 50 to 300 % compared with the martensite. Similarly tough uper and lower bainite differ in hardness for 5 to 19 HRC.

The holding time on the transformation temperature should be equal to the time of complete transformation into bainite. The time for achieving the highest toughness close to the temperature of formation of upper bainite should be longer than the time for complete transformation of austenite into bainite. Bainite, formed close to Ms temperature, is less tough than that formed at slightly higher or lower temperature.

Alloying with tungsten does not influence the bainite toughness.

In steel with 2 % C and 12 % Cr the partial transformation into bainite improves the toughness for 20 % compared with the martensite structure.

By continuous cooling of steel through the extreme left bainite region in the TTT diagram, the bainite is formed which improves the steel toughness to a relative high extent.

заключение

При сравнении вязкости аустенита в бейнит с вязкостью аустенита в мартенсит по изотермической закалки малолегированных Сг-W-V сталей установленно, что вязкость в бейнит 50 до 300 % лучше. Что же касается твердости, то разница между верхним и нижним бейнитом составляет 5 до 19 единиц HRc.

Продолжительность задержки образцов при темп-ре преобразования должна длиться до полного преобразования аустенита в бейнит. Для получения максимальной вязкости при темп-ре близкой пределу образования верхиего бейнита должно время преобразования быть более длительное, чем время необходимое для полного преобразования аустенита в бейнит. Вязкость бейнита, который образовался при темп-ре вблизи точки М, менее удовлетворительная в сравнении с вязкостями, которые получаются при несколько повышенных или же пониженных темп-ах.

Легирование с элементом W не оказывает влияние на вязкость бейнита.

Сталям с 2 % С и 12 % Сг можно частичным преобразованием аустенита в бейнит улучшить вязкость в отношении на мартенситное состояние на 20 %.

Комбинированным охлаждением стали через крайнию левую часть бейнитной зоны в ТТТ диаграмме может образоваться бейнит, который существенно улучшить вязкость стали.

Odgovorni urednik: Jože Arh, dipl. inž. – Člani dr. Jože Rodič, dipl. inž., Franc Mlakar, dipl. inž., dr. Aleksander Kveder, dipl. inž., dr. Ferdo Grešovnik, Darko Bradaškja, tehnični urednik

Oproščeno plačila prometnega davka na podlagi mnenja Izvršnega sveta SRS – sekretariat za informacije št. 421-1/172 od 23. 1. 1974

Naslov uredništva: ZPSŽ – Železarna Jesenice, 64270 Jesenice, tel. št. 81-341 int. 800 – Tisk: TK »Gorenjski tisk«, Kranj

VSEBINA

UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11R, D11a

Metalurgija - sekundarna rafinacija jekla - legiranje

M. Švajger, I. Rac

Možnosti sprememb kemijske sestave jekla med procesom električnega pretaljevanja pod žlindro.

Železarski zbornik 18 (1984) 1 s 1-8

Zaradi oksidacijskih procesov, ki potekajo med električnim pre-Zaradi oksidacijskih procesov, ki potekajo med električnim pre-taljevanjem jekel pod žlindro, nekateri elementi odgorevajo in je njihova vsebnost v EPŽ ingotu nižja kot v elektrodi. V kolikor je vsebnost teh elementov že v elektrodi prenizka, bo zaradi dodatne-ga odgora med pretaljevanjem v EPŽ ingotu še nižja in lahko tak ingot predstavlja analizni izmeček. Da se temu izognemo, smo raz-vili tehnologijo dolegiranja nekaterih elementov med električnim metaljavanjem v EPŽ pretaljevanjem pod žlindro. Avtorski izvleček

UDK: 621.771.016: 620.183:620.184 ASM/SLA: F23p, P, D9g

Metalurgija - valjanje konti jekla - makrostruktura - mikrostruktura - mehanske lastnosti

D. Kmetič, F. Vodopivec, F. Vižjak, F. Haler Vpliv stopnje predelave na lastnosti konti jekla. Železarski zbornik 18 (1984) 1 s 17-26

Delo obravnava vpliv stopnje predelave na lastnosti cementacij-skih jekel, jekel za poboljšanje in vzmetnih jekel. Porozna sredina in radialne razpoke se morajo pri valjanju zavariti. Minimalna stopnja predelave mora zagotoviti rekristalizirano mikrostrukturo s potrebno velikostjo kristalnih zrn. Za velikost kristalnih zrn je pomembna tudi končna temperatura valjanja in hitrost ohlajanja po valjanju. Iz teh razlogov moramo obravnavati stopnjo predelave iz več stališč. Avtorski izvleček

UDK: 621.771:669.14.298.2 ASM/SLA: F23, CM, N5

Metalurgija - cementacijska jekla - rekristalizacija - mikrostruktura

F. Vodopivec, D. Kmetič in A. Rodić

O zadrževanju rekristalizacije austenita pri vročem valjanju cementacijskih jekel pri padajoči temperaturi Železarski zbornik 18 (1984) 1 s 9-16

Ko se zniža temperatura pod neko mejo, je rekristalizacija austenita med valjanjem nepopolna. Kritična temperatura je višja v jeklu z niobijem, odvisnost med temperaturo začetka valjanja in količino nerekristaliziranega austenita pa podobna v jeklu z in brez niobija. Nepopolna rekristalizacija ni neposredna posledica tvorbe AIN ali NbC med valjanjem. Vzrok za stabilnost nerekristaliziranega austenita pri nadaljevanju valjanja jekla je hitri proces poprave v poligonizirani substrukturi, ki je nastala med prvim in drugim vtikom.

Avtorski izvleček

UDK: 620.178.746.22:621.785.4 ASM/SLA: J26p, Q6n, N8g, N8m

Metalurgija - izotermno kalenje - mehanske lastnosti

Franc Uranc

Vpliv toplotne obdelave na žilavost bainita Cr-W-V jekel Železarski zbornik 18 (1984) 1 s 27-35

Z izotermno premeno avstenita v bainit moremo jeklom sestav 0,5 % C, 1 % Cr, 0,15 % V ali 0,6 % C, 1 % Cr, 2 % W in 0,2 % V zboljšati žilavost nasproti žilavosti v martenzitnem stanju za 50-300 %.

Za dosego največje žilavosti je popolna premena na splošno najugodnejša, daljši čas je potreben pri temperaturi blizu nastaja-nja zgornjega bainita. Bainit, ki nastane tik ob M, temperaturi, kaže minimum žilavosti.

Jeklom z 2 % C in 12 % Cr (0,6 % W, 0,15 % V) more delna premena v bainit povečati žilavost za 20 %

Z zveznim ohlajanjem skozi levi del bainitnega območja TTT diagrama nekoliko zboljšamo žilavost Cr-W-V jekla.

Avtorski izvleček

INHALT

UDK: 621.771:669.14.298.2 ASM/SLA: F23, CM, M5

Metallurgie - Einsatzstähle - Rekristallisation - Mikrogefüge

F. Vodopivec, D. Kmetič und A. Rodič Hinderung der Rekristallisation von Austenit beim Warmwalzen der Einsatzstähle bei fallender Temperatur

Železarski zbornik 18 (1984) 1 S 9-16

Als die Walztemperatur unter eine bestimmte Grenze fällt wird die Rekristallisation von Austenit während des Walzvorganges unvollkommen. Die kritische Temperatur ist höher in mit Niobium legierten Stahl, die Abhängigkeit zwischen der Walzanfangstemperatur und der Menge des nichtrekristallisierten Austenites ist ähnlich im Stahl mit und ohne Niobium. Die unvollkommene Rekristallisation ist nicht eine unmittelbare Folge der Bildung von AIN oder NbC während des Walzens. Die Ursache für die Stabilität des nichtrekristallisierten Austenites beim weiteren Walzen von Stahl ist der schnelle Erhohlungsprozess in der polygonisierten Substruktur die zwischen dem ersten und dem Zweiten Stich entstanden ist. Auszug des Autors

UDK: 620.178.746.22:621.785.4 ASM/SLA: 126p, Q6n, N8g, N8n

Metallurgie - mehanische Eigernschaften

Franc Uranc

Einfluss der Wärmebehandlung auf die Zähigkeit von Bainit in Cr-W-V Itählen

Železarski zbornik 18 (1984) 1 S 27-35

Durch die isothermische Umwaldlung von Austenit in Bainit kann den Stahlen der Zusammensetzung von 0,5 % C, 1 % Cr, 0,15 % V oder 0,6 % C, 1 % Cr, 2 % W und 0,2 % V die Zähigkeit gegenüber der Zähigkeit im Martensitzustand um 50 bis 300 % verbessert werden.

Für die Erziehlung der grössten Zähigkeit ist eine volkommene Umwaldung im allgemeinen die Günstigste. Eine längere Zeit ist nötig bei der Temperatur in der Nähe der Bildung von oberem Bainit. Der sich in der Nähe der M, Temperatur bildende Bainit zeigt ein Minimum der Zähigkeit. Den stählen mit 2 % C und 12 % Cr (0,6 % W, 0,15 4 V) kann

Den stählen mit 2 % C und 12 % Cr (0,6 % W, 0,15 4 V) kann eine teilweise Umwandlung in Bainit die Zähigkeit um 20 % vergrössern.

Durch die kontinuirliche Abkülumg von Stahl durch den linken Teil des Bainitbereiches im TTT Diagramm kann die Zähigkeit der Cr-W-V Stähle einigermassen verbessert werden.

Auszug des Autors

UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11R, D11a

Metallurgie - sekundäre Raffination von Stahl - Legieren

M. Švajger, J. Ranc

Mögliechkeiten für die Änderung der chemischen Zusammensetzung von Stahl während der Elektroschlackeumschmelzung Železarski zbornik 18 (1984) 1 S 1-8

Beim Elektroschlacheumschmelzverfahren brennen wegen der Qxydationsprozesse einige Elemente ab so, dass der Enthalt dieser Elemente im USU Block niedriger ist als in der Elektrode. Insofern der Enthalt dieser Elemente in der Elektrode zu niedrog ist werden diese wegen des zusätzlichen Abbrandes noch niedriger was einen Auswurf des Blockes wegen der Fehlanalyse zur Folge haben kann. Um solchen Fällen auszuweichen ist eine Technologie für das Zulegieren von einigen Elementen während der Elektroschlacheumschmelzung entwickelt worden.

Auszug des Autors

UDK: 621.771.016:620.183:620.184 ASM/SLA: F23p, P, D9g

Metallurgie – walzen von Stranggussknüppeln – Makrogefüge – Mikrogefüge – mechanische Eigenschaften.

D. Kmetič, F. Vodopivec, F. Vizjak, F. Haler

Einfluss des Verformungsgrades auf die Eigenschaften von stranggegossenem Stahl

Železarski zbornik 18 (1984) 1 S 17-26

Im Artikel wird der Einfluss des Verformungsgrades auf die Eigenschaften der Einsatzstähle der Vergütungs und Federstähle behandelt.

Die poröse Mitte und die Radialrisse müssen sich beim Walzen verschweissen. Der minimale Verformungsgrad soll ein rekristallisiertes Mikrogefüge mit der nötigen Korngrösse gewahrleisten. Für die Korngröse ist die Walzendtemperatur und die Abkühluns – geschwindigkeit nach dem Walzen besonders wichtig. Aus diesen Gründen soll der Verformungsgrad aus verschiedenen Gesichtspunkten behandelt werden.

Auszug des Autors

CONTENTS

UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11r, D11a

Metallurgy - Secondary Steel Refining - Alloying

M. Švajger, J. Ranc

Possibilities for Changing Chemical Composition of Steel during Electroslag Remelting

Železarski zbornik 18 (1984) 1 P 1-8

Due to oxidation processes occuring in the electroslag remelting, there is loss of some elements, and their content in the ERS ingot is lower than that in the electrode. If the content of those elements is too low already in the electrode, it will be still lower in the ESR ingot and thus such ingot can be rejected due to the composition. To avoid it the technology of alloying some elements during the ESR process was developed.

Author's Abstract

UDK: 621.771.016:620.183:620.184 ASM/SLA: F23p, P, D9g

Metallurgy — Rolling the Continuously cast Steel — Microstructure — Macrostructure — Mechanical Properties

D. Kmetič, F. Vodopivec, F. Vizjak, F. Haler Influence of Degree of Working on the Properties of Continuously Cast Steel

Železarski zbornik 18 (1984) 1 P 17-26

The paper presents the influence of the degree of working on the properties of case-hardening, tempering, and spring steel. Porous centre and radial cracks must be welded in rolling. The minimal degree of working must assure the recrystallized microstructure with the necessary size of crystal grains. The grain size depends also on the final rolling temperature and the cooling rate after the rolling. Thus the degree of rolling must be treated from various viewpoints.

Author's Abstract

UDK: 621.771:669.14.298.2 ASM/SLA: F23, CN, N5

Metallurgy - Hot Rolling - Case-Hardening Steel - Recrystallization - Microstructure

F. Vodopivec, D. Kmetič, A. Rodič

On Retaining the Recrystallization of Austenite in Hot Rolling the Case-Hardening Steel at decreasing Temperature. Železarski zbornik 18 (1984) 1 P 9-16

When temperature drops under some limit the recrystallization of austenite during rolling is incomplete. The critical temperature is higher in steel with niobium while the relation between the initial temperature of rolling and the amount of not recrystallized austenite is similar in steel with or without niobium. The incomplete recrystallization is not a direct consequence of AIN or NbC formation during rolling. The reason for the stability of not recrystallized austenite in further rolling is the rapid recovery process in the polyganized substructure which was formed between the first and the second pass.

Author's Abstract

UDK: 620.178.747.22:621.785.4

ASM/SLA: J26p, Q6n, N8g, N8m

Metallurgy - Isothermal Hardening - Mechanical Properties

F. Uranc

Influence of Heat Treatment on the Bainite Toughness in Cr-W-V Steel

Železarski zbornik 18 (1984) 1 P 27-35

By isothermal transformation of austenite into bainite the toughness of 0.5 % C, 1 % Cr, 0.15 % V or 0.6 % C, 1 % Cr, 2 % W, 0.2 % V steel can be improved for 50 to 300 % compared to the martensitic structure.

To achieve the highest toughness the complete transformation is in general the most suitable, longer time is needed at the temperature close to the formation of upper bainite. The bainite formed close to the M₃ temperature shows the lowest toughness. In steel with 2 % C and 12 % Cr (0.6 % W, 0.15 % V) a partial

In steel with 2 % C and 12 % Cr (0.6 % W, 0.15 % V) a partial transformation into bainite can increase the toughness for 20 %. By continuos cooling through the left section of bainite region in the TTT diagram the toughness of Cr-W-V steel can be improved to some extent.

Author's Abstract

СОДЕРЖАНИЕ

UDK: 621.771:669.14.298.2 ASM/SLA: F23, CN, N5

Металлургия - цементуемые стали - рекристаллизация микроструктура.

F. Vodopivec, D. Kmetič. A. Rodič

О задершки рекри сталлизации аустенита при горячей прокатки цементуемых сталей при понижающей температуре. Železarski zbornik 18 (1984) 1 C 9-16

Как только температура во время прокатки стали снизиться под некоторый определенный предел, то рекристаллизация аустенита неполная. Сталь с содержанием Nb имеет более повышенную тритическую темп-ру. Зависимость же между темпрой в начале прокатки и количеством некристаллизуемого аустенита в сталях с Nb и без этого элемента подобны. Неполная рекристаллизация аустенита не является как непосредственное последствие образование AIN или NbC во время прокатки.

Устойчивость нерекристаллизированого аустенита при последовательной прикатки стали устанавливается вследствии быстроты процесса. При этом до наступления рекрисстализации зерен происходит их преобразование в полигональную субструктуру, которая образовалась между первым и вторым пропусками.

Автореф.

UDK: 620.178.746.22:621.785.4 ASM/SLA: J26p. Q6n, N8g, N8m

Металлургия - изотермическая закалка - механические свойства

Franc Urane

Влияние термической обработки на вязкость бейнита Cr-W-V сталей.

Železarski zbornik 18 (1984) 1 C 27-35

Изотермическим воздействием аустенита в бейнит можно сталям состава 0,5% С, 1% Сг, 0,15% V или 0,6% С, 1% Сг, 2 % W, и 0.2 % V, улучшить вязкость в отношении на вязкость в мартенситном состоянии на 50-300 %.

Для получения максимальной вязкости больше всего отвечает полное преобразование аустенита в бейнит. Более длительная продолжительность необходима при т-ре образования вблизи образования поверхносного бейнита. Бейнит, который образуется непосредственно при М, темп-ре имеет минимальную вязкость.

Сталям с 2 % С и 12 % Сг (0,6 % W, 0,15 % V) должно частичное преобразование увеличить вязкость на 20 %. Комбинированное охлаждение через левую часть бейнитной зоны ТТТ диаграм-мы вязкоств Cr-W-V сталей улучшает. Автореф

Автореф.

UDK: 669.046.54:669.187 ASM/SLA: D8p, D11n, D11r, D11a

Металлургия - вторичное рафинирование стали - легирование.

M. Švajger, J. Ranc

Возможности изменения химического состава стали во время процесса электрического переплава под шлаком. Železarski zbornik 18 (1984) 1 C 1-8

Вследствии окислительных процессов, которые произсхолят во время электрического переплава стали под шлаком получается частичное выгорание некоторых элементов, их содержание в ЕШП изложнице меньше чем в электроде. Если содержание етих элементов уже слишком низкое в самом электроде, то вследствии дополнительного выгорания во время переплава под шлаком, содержание этих элементов в изложнице будет ещё меньше. В отношении химического состава изложница может оказаться браком. Чтобы ето не произошло во время электрического переплава под шлаком развита технология легирования расплава с некоторыми элементами.

Автореф.

UDK: 621.771.016:620.183:620.184 ASM/SLA: F23p, P, D9q

Металлургия - прокатка стали непрерывного литья - макроструктура — микроструктура — механические свойства.

D. Kmetič, F. Vodopivec, F. Vizjak, F. Haler

Влияние степени переработки на свойства стали непрерывного литья.

Železarski zbornik 18 (1984) 1 C 17-26

В работе рассмотрено влияние степени переработки на свойства цементуемой стали, стали для улучшения и пружинной стали.

Пористая средняя часть и радиальные трещины должны быть во время прокатки сплавиться. Минимальная степень переработки должна обеспечить рекристаллизированную микроструктуру кристальных зерен необходимой величины. На величину кристальных зерен оказывает влияние также конечная температура прокатывания и быстрота охлаждения после прокатки.

На основании этих причин надо степень переработки рассматривать с нескольких позиций.

Автореф.

